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ABSTRACT: We present two computational methods for determining the Nash equilib-
rium points for a particular class of games. The analysis is based on the
concepts of descent directions, weak and strong Nash stationary points. An
illustrative numerical example is shown at the end of the paper.

A  Introduction

Traditional game theory takes as its basic distinction that between cooperative games
and noncooperative games. In cooperative games, the players are assumed to be free to
communicate in any way they choose before and during the game. More importantly, they
are also assumed to be able to bind themselves to any agreements that may be reached during
such bull sessions. A noncooperative game ought properly to be defined as a game that is not
cooperative. More often, the terminology is used to signify a game in which agreements are
never binding on the players.

The notion of Nash equilibrium of an n-person noncooperative game has an important
significance in game theory and economic applications. The existence of this point has been
extensively studied, beginning with the important existence theorem due to Nash ([16], [17])
and continuing with other several investigations ([2], [19]). From another point of view,
practical algorithms for finding Nash equilibrium have been elaborated only recently. These
numerical algorithins seem to be important in real-word applications, where the players do
not know each other’s objective functions and other relevant information ([6]). The players
only have their own tentative decisions to communicate to each other during each phase of
the computation as seen in [4] and [7]. Among the numerical algorithms formulated so far,
we may focus on those presented in [14], [6], [5], [18].

In this paper, we consider a class of games and we investigate two numerical methods
for computing the Nash equilibrium. The numerical methods presented here start from the
ideas of Nash stationary points ([13]) and computation of Nash equilibria via parallel gradient
descent ([6]).
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B The abstract framework

The purpose of this section is to recall some basic facts concerning our topic.

Let us consider X, Y two Hausdorff topological vector spaces, as well as the subsets K7 C
X, K, CY.

Consider a non-cooperative game of two players: the first players task is to choose a
strategy z from K, and the second players task is to choose a strategy y from Ks.

The traditional model for the game theory classifies the strategies of each player using a
loss function (payoff function). Denote by f : K3 x Ky — R the loss function associated with
the first player and by g : K; x Ko — R the loss function associated with the second player.
It is obvious that each player makes decisions in order to minimize his loss. For this reason,
we are led to the following definition:

Definition B.1 The point (a,b) € Ky x K5 is called a Nash equilitbrium point for the game
of:

f(arb) S f(ﬂ),b) i Vz e Kl

g(a’b) § g(a’)y) » Vy € K2 .

These inequalities assert that the strategies (a,b) are optimal responses of each player, if
the strategy of the partner is unchanged ([1]).
J. Nash proved the following existence theorem( [16], [17], [2]):

Theorem B.2 Suppose that Ky, Ko are nonempty, compact and convez. Suppose that the
payoffs f, g are continuous functions with

Yy € Ky fized, the function x € Ky — [ (z,y) is quasiconvez
Vz € K fized, the function y € Ko — g(z,y) is quasiconvez

Then at least one Nash equilibrium exists.

Remark B.3 The above result offers a sufficient condition for the existence of an equilibrium
point, however equilibrium points may exist even if the conditions of the theorem are not
satisfied.

In {13] there are presented other concepts which are close related to the Nash equilibrium
points. Let us consider X,Y two real normed spaces, and K, Ky nonempty compact convex
subsets of X and Y, respectively.

We say that the real-valued function f belongs to the class £; (Kj x K?2) if the following
three properties hold:

(i) there exists a convex open set Dj such that Xy € Dy € X and f is defined on D; x Koy;

(i1) for all (z,y) € K x Ka, there exists L > 0 and a neighborhood U of (z,y) such that

If (2, 2) —-f(x”,z)l _<_LHx'—x”||,‘v’(m',z),(x”,z) eUN(D; x Ky);

(iii) f is continuous on K; x Ky .

Similarly, g €£s (K X Ka) if:

(1) there exists a convex open set Dy such that K» C Dy C Y and g is defined on K x Dy;
(i1) for all (z,y) € K7 x Ka,there exists L > 0 and a neighborhood U of (z,y) such that

9 (z9) =g (=9")| <Ly =y"|.V (2.9) (2,y") € UN (K1 x Da);
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(iii) g is continuous on K| x Ko .
Let us denote the cones

Sk, (z) = {A(z'—2):2" € K, >0}
Sk, (y) = { My —y):y € Ka, A >0}

as well as the contingent cones

TKI (33) =

{h1 € X :3e;, = 0%, 3hy — hy s.b. ¢+ exhy € Ky, Vk € N}
Tr, (y)

{hg €Y :dep — 0+,3hk — ho s.t. y + erphy € Ko,Vk € N}

If K1, K> are convex sets, then according to (3], we have

Tk, (z) = Sk, (z) ’ Tk, (y) = clSk, (y) -
Then, by [13], the strong partial directional derivatives are defined as:

X - , b
Dif @) () ¢ =tim ng LEEEAZT@D g (o
a+€577.)1€1\’1

Dig(ab) (hy) : =lm inf I\B0FER2)=9(a,0)

e—0t £
bt+ehaE Ko

,ho €8 Ky (b)
and weak partial directional derivatives are defined as:

D’lluf (aab) (h]) ;= lim sup f (7" + Ehl’y) - f (SE,’y)

e—0t €
r—a
y—b,y€ K2

h - 9
D¥g(a,b) (h2) : =lim sup g(z,y +ehe) —g(z,y)
e—0F €
z—a,2€K
y—b

,h1€ X

,ho €Y.

Definition B.4 ([13]) Let f,g : K1 x Ko — R be two real-valued functions. The point
(a,b) € K7 x K> is called a strong Nash stationary point for the functions f,g if

1/ (a,b) () 2 0, Vhy € Sk, (a)
D3g (a,b) (h2) >0, Vhy € Sk, (b).

Definition B.5 ([13]) Let f € £1 (K1 x K2) ,g € L2 (K1 x Kg) be two real-valued function.
The point (a,b) € K7 x Ky is called a weak Nash stationary point of the functions f, g if

DY f(a,b) (h1) 20, Vh; € Tk, (a)
Dzzug (a, b) (hz) >0, Vhe € TK2 (b) .

The links between Nash equilibrium and Nash stationary points are developed in [13]. For
our purpose, let us recall the following result.
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Proposition B.6 Let K1, K, be nonempty compact convex sets and f,g: K1 X Ko — I be
functions such that f € L1 (K1 x K3),g9 € L2 (K1 x K3) and

Yy € Ky fized, the function € Dy — f (z,y) is convex
Vz € K fized, the function y € Dy — g (z,y) 15 convezr '

Then every weak Nash stationary point is a Nash equilibrium point.

Finally, we note some notions and results which belong to so called 'non-smooth analysis’.
Consider V a real Banach space and U an open subset of V.

Definition B.7 A function f : U — R is called a locally Lipschitz function if everyu € U
admits a neighborhood Ny C U and a number K = K (N,) > 0 such that

|f (u1) = f (u2)] < K flur — gl , Vur, ug € N

We should remark that all convex continuous differentiable functions are locally Lipschitz
functions.
The basic definition of the 'non-smooth analysis’ is given below.

Definition B.8 ([9],/8],[10],[11],[12]) The generalized directional derivative of a locally
Lipschitz function f : U — R at u € U in direction v € V is defined as

7% (u) (v) :=lim sup flottv)~f (w)

w—u t
t—=0t

We shall say that f is Clarke differentiable at u if for every v € V , the limit fO (u) (v)
exists and it is finite.

Recall the classic directional derivative

F () (0) = lim L2 =)

10+ t

when exists. It is obvious that, if f'(u) (v) exists, then

£ () (v) < £ (u) (v).

Some important results concerning the generalized directional derivative and the classic
directional derivative are stated below.

Proposition B.9 ([1]) If f : V — R is a strictly convex function, w € Domf, v € V, then
exists f' (u) (v) which satisfies

)= flu—v) < f(u) @) < flutv)-f(u).
Proposition B.10 ([15])If f : U — R is continuous differentiable, then
(V£ (u),v) = fO ) (v) = f (u) (v),Yu € U,Yv € V. (1)
Proposition B.11 ([1]) If f is continuous at u € Domf , then f is Clarke differentiable and

F(w) (v) = fO(u) (v),Yv e V.
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C The numerical algorithms

The following proposition will be employed in the numerical methods presented in this
paper.

Proposition C.1 Let C; CR™, Co C R™ be nonempty compact subsets, let f,g: C1xCy —
R be differentiable functions, let © € intCy, y € intCy, u € R™ | v € R™ be arbitrary elements.

If
<u, 'g'g' (iL', 7/)> <0 and <’U, %‘% (Ty)> <0 (2)

then there exists a > 0, b > 0 such that

rt+tu€Cr, f(z+tuy) < fl(z,y) ,Ve(0d
y+tveCy, glz,y+tv) <g(z,y) ,Vte (0]

Example.C.Z If %ﬁ (z,y) # 0 and g% (z,y) # 0 then u = —%ﬁ (z,y) and v = -g;l (z,y) are
good candidates as descent directions satisfying (2).

Example C.3 If there exists i € {1,2,....,n1} such that a%% (z,y) #0 and j € {1,2,...,n2}
such that %’; (z,y) # 0 then u = —sgn% (z,y) e and v = ~—sgn§5; (z,y) e’ are good candi-
dates as descent directions, as well.

Recall that ¢* is the vector with all components equal to zero, except the component on the
position ’k’, which is one.

We are now prepared to consider the following problem (P):
Find the Nash equilibrium for the two-person noncooperative game characterized by the
following:

K; C R, Ky C R are nonempty compact conver subsets

Ky = [my, My} , Ky = [ma, My)

fig : K1 x Ko = R are continuous differentiable functions ,with f € L; (K1 X K3), g €
Ez (Kl X Kg) and

Yy € Ky fized, the aplication x € D) — f(x,y) is strictly convex
Vz € Ky fized, the aplication y € Dy — g (z,y) is strictly convez

According to the Theorem B.2, the problem (P) admits a Nash equilibrium point at
least. Our goal is to elaborate numerical algorithms which supplies these points. Taking
into account the Examples C.2 and C.3, we can elaborate two numerical algorithms, which
generate a sequence (zP, y”)pG N+ converging to a Nash equilibrium point.

THE GRADIENT TYPE ALGORITHM:

1. Choose (le,yl) € (int [my, My]) x (int [mo, Ma]) , put p=1;
2. Compute %% 2P, yP) and gg (zP,yP) .

(
If [g% (zP,y?) =0 and 3—5 (zP,yP) = 0] put z9 =2P y1 =yP Vg > p and stop the
algorithm;
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3. If §L (2P, 4P) # O then

set ap = (1 — 3 ) sup{a > 0:2f — agi (zP,yP) € [my, M1],

Va e (0,(1], f (:L.p - a% (l.p’,yp) ’yp) < f (:L.p,yp)}

else set a, :=1 ;
4. If gg (P, yP) # 0 then

set by := (1 — 5 ) sup{B > 0: 9P — ﬂg% (zP,yP) € [ma, M2},

VB € (0,8), g (x”,y” - B3 (w”,y”)) < g (P, yP)}
else set by
=yP — bp% (zP,yP) '

6. [ncrease p: —p-/—] and go to the second step .

5. Let{

Consider now (27, y),,c v+ the sequence obtained by the gradient type algorithm. Because
the sequence (z?,y P)pen~ is bounded, Cesaro’s Lemma implies that there exists a subsequence,
denoted the same, converging to a certain point (a,b) € K1 x Ko .

Theorem C.4 The limit point (a,b) € K1 x Kj, obtained by the gradient-type algorithm, is
a Nash equilibrium point of the problem (P).

A slight change in the gradient type method, based on the Example C.3, is given below.

THE RELAXATION TYPE ALGORITHM:

1. Choose (z',y') € (int [m1 M) X (int[meo, Ms)) , put p=1;
2. Compute gé (zP,yP) and —i 2 (2P, yP).
If [5£ (zP,yP) =0 and —3 (:rp,y”) = 0] put 9 =zP y? =yP Vg > p and stop the
algorithm;
3. If %ﬁ (2P, yP) # 0 then
set ap := (1 — o) sup{a > 0: 2P — au € [m1, My],
Va € (0,0, f (2P — au,yP) < f (2P, y)}
where, u = sgn%é (2P, yP)
else set ap :=1;
4. If %3 (zP,yP) # 0 then
set by := (1 - 515) sup{f > 0:y? — fv € [mq, My,
Vi e (0,8, g (fr”,y” - Bv) < g(a?,y")}
where, v = sgn(—% (zP,yP)
else set b, :=1;
Pl = gP — apsgn—i (zP,yP)
= yP — bpsgnzgl (27, 9F) ’
6. Increase p: —p+1 and go to the second step .
Using the same argument as in the gradient-type method, we note that there exists a

subsequence generated by the relaxation-type algorithm, which is convergent to a certain
point (a,b) € K; x K .

Theorem C.5 The limit point (a,b) € K; x Ko obtained by the relazation-type algorithm, is
a Nash equilibrium point of the problem (P).
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Remark C.6 The steps ap,b, from the gradient-type and relazation-type algorithm exist,
according to the Proposition C.1.

The results stated above also hold for the n-player noncooperative games, which satisfy all
the assumptions of the problem (P).

D Proofs

D.1 Proof of the basic proposition

We begin with the proof of the Proposition C.1.
We shall discuss only the conclusion about the function f. Since f is differentiable, then
for every (u/,u") € R™ x "2

. ' ,/’ ") — ) I 0 0 |
mf(zm y+tm) f(z y):<(u,u),(ég(z,y),a—i(z,y))>- (3)

If we choose (u/,u") = (u,0), the relation (3) becomes

i L&+ tuy) = f(z,y) =< o (s ,y)>'

U, ——
t—0 t

"0z

Then the limit definition, for ¢ = — < U, 3 (2, y)> > 0, implies that

30, > 0 s.t. [z +tuy) = fzy) <u,g—£(:r,y)>, < - <u,g—£(:r,y)>,

t

Vit € [—(11, (11] \ {0} .

Moreover, because « € intCy, it exists ag > 0 such that z + tu € Cy, Vi € [—ag, a9 .
If we denote by a = min {aj,as} > 0, then for every ¢ € (0, a], the following relations hold

z+tu €
flz+tuy)— flz,y) < O

The second conclusion can be proven similarly. W

D.2 Proof of the gradient-type theorem

The main result of this paper is Theorem C.4. Its proof is presented below.

After the gradient type algorithm is applied, a converging subsequence (x”,y“’)pE N+ 18
generated. Recall that (a,b) is its limit point. Now, we can be placed in one of the following
situations: A, B, C, D, only.

Case A: The sequence (z ”,y”)peN. is obtained as the result of step 2.

Hence there exists pg € N such that (zP,yP) = (a,b),Vp > pg and —ﬁ =~ (a,b) =0, 5% (a,b) =

Consider %ﬁ (a,b) = 0.
We denote by Vf (z,y) = (%ﬁ, %5) (z,y) the gradient of f at the point (z,v).
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According to the Proposition B.10 we can write that

Y] ! _ 1o
(VF (@,9) (0 0)) = 1° (2, y) () = lim sup LT EWY T ev) = f(#hy)
e—07+ €
x:—w
Yy —y

If we take

(z,y) = (a,b)
(u,v) = (h,0) (where h € R)

in the relation above, we can note that

0= <g£(a,b),h> + <g—{/(a, ),0> = f%(a,b) (h,0).

Moreover, for every h € R with a — h € K|, Proposition B.9 implies that
f(a,b) — f(a—h,b) < f'(a,b) (h,0) < f°(a,b) (h,0)=0
i.e.,
f(a,b) < f(a—h,b),Yh € R witha — h € K.

So,
f((l,b)Sf(CE,b),V’L'EKl (4)

Similarly, if we consider gg (a,b) =0, we can deduce that
g(arb) Sg(a,y)7Vy€K2- (5)

The relations (4), (5) tell us that (a,b) is a Nash equilibrium point.
Case B: There is a subsequence, denoted similarly (a;p,ypl), s.t. 2P # a,yP # b,Vp € N*.
In this situation we shall prove that (a,b) is a weak Nash stationary point, i.e.,

{f(a,b) (h1) 20, Vhy € Tk, (a)

59 (a,b) (h2) >0, Vhy € Tk, (b).

We prove that
for every hy € Tk, (a), DY f (a,b) (h1) > 0. (6)

Let us assume that there exists h € Tk, (a) such that

f($+€h‘7y) _f(xay) <

0. (7)
£

[ = lim sup
e—07F
z—a,y—b(yeK2)

Because [ < 0, there exists I’ > 0 such that [ +1' <0 .
Moreover, inequality (7) implies that

f(.'L'+€h/’lj) _f(ray)
€

for V0 < € < 61, for Vz # a, |z — a] < 6y, for Vy € Ky, y # b, |y — b < d71.

36, >0: <l+lU'<0



52 — COMPUTATION OF NASH EQUILIBRIA: A GRADIENT-TYPE AND RELAXATION-TYPE METHOD

The Mean Value Theorem implies further that

<% (€e, ) a5h>

(3

3. € (z,z +¢ch): <I+10I'<0

ie.,

agge(w,ﬂeh):<%(§E,y),h><1+z'<o ®)

for V0 < £ < 4y, for Vo # a, |z — a| < &1, for Vy € Ky, y # b, |y — b] < 4.
Relation (8) contains two relevant information:

1. h#0.
2. G (w,y) #0.Ya # a,l5 — o] <8,y € Ko,y #b,ly —b] <61

Otherwise, if gﬁ (z,y) = 0, because of the continuity of the derivative, there exists
8 > 0s.t. %ﬁ (m’,y)‘ < “ﬁ,‘ll, , for V&' ||z’ — 2} < ¢'. This implies

[<%( ',y),h>!gl%(z’,y)‘-[hk]lﬂ’l (9)

Consider € € (0,07),|eh| < &’. Then, by (8) we can remark that

of
l<5f; (gsvy) 7h>

The last evaluation is in contradiction with the relation (9).

> [I+1'|, where |£ — x| <|eh| < ¢

Thus, we can note that

0 ' -
() £ 0Va £ o~ al <8,y € Koy bl — b < by (10)

Hence, by case A hypothesis, by relations (8) and (10), there exists a subsequence, denoted
similarly (z?,y”),c v+, and pg € N* with the following properties:

z? 74(1, I.’Ep—(li < 511yp EK?ayp #ba Iyp_b! < 61:VPZPO

gé (22,97) = =\ (7%, 47) - h (11)

where,
A (2P, y?) > 0,Yp > po.

The following three subcases are possible: ¢ € intKy,a = my,a = M;.

If a € intKy there exists d; > 0 s.t. (a — d2,a + §y) C intK;.

Let é3 = min {61,62, ﬁ"l’m} > (. Corresponding to d3 > 0, there exists p; € N* s.t.:

o
jof — 29| < §3,Vp,q2p1 (12)
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|zP —a] < d3,Yp > py
lyl) - b' < 53,VP 2 yai (yp & KQ) .

Denote by ps = max {pg,p1} . Then, taking into account the relation (12), we can note
that for every p > po, and 0 < ¢ < §3 follow

|27 +eh —a| < |2P —al + £ || < 83 + 83 |h] < b

So,
P +eh € (a — 09,0 + &3) C intK,

2Pt (a—63,a+83) C (a— 62,0+ o) CintK,.

Recall from gradient type algorithm, that zP*! has the form zPt! = 2P — apg—i (zP,yP) .
Looking at the function values, one can notice that

f(@” +eh,y®) = £ (2”,97) <O (from (7))
of , .
flaf - W5 (2P, y7), 9P | — f (2P, y?) < O (from algorithm)
The relations above, relation (11) and the gradient-type algorithm imply
apA (ZP,9yP) > ¢ 1—i Ve with0 <e < d
pAT, Y ) 2 op ) 3

ie.,

1
@) 20 (1= 5] W2 p (13)

Finally, by relations (11) and (13), we can conclude that

%31 > |ZPt™ — 2P|

= lap/\ (2P, y?) h + api1A (g;pﬁ'l’yp-H) Bt o+ apyn (mp-i-n’yp-i—n) h!

1 d
> bl (n+ )8 (1= 55 ) 2 il +1) .90 2 py

i.e.,

(n+1)|h| <1, Vn € N*.
In other words, we obtained a contradiction.
Ifa= ﬁzh then taking into account that h > 0, we get
Pt = 2P + a ) (2P, yP) h > 3P > a=my ,¥p > po

and we obtained a contradiction with the fact that 27 — a.
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If @ = M, then similarly we get
Pt = 2P + g\ (2P, yP)h < 2P <a - My ¥p > po
and we obtained a contradiction with the same z? — a.
All the contradictions obtained earlier show us that
Vhy € Tk, (a), DY f (a,b) (h1) > 0.

To show that for every ho € Tk, (b), D¥g (a,b) (ho) > 0, we proceed in the similar way.

As a conclusion, by Proposition B.6, one can see that (a,b) is a Nash equilibrium point.

Case C: There exists a subsequence, denoted similarly (zP,y*),pp € N* s.t. 2P # a,Vp €
N*,y? =b,Vp 2 po.

We prove that (a,b) is a weak Nash stationary point.

Our goal is to prove that for every hy € Tk, (a), DY f (a,b) (h1) > 0 . Again this will be
proven by contradiction.

First, we have to remark that b € intK5, according to the gradient type algorithm.

Now, we assume that 3h € Tk, (a) :

l=lm  sup LEFEmY-S@Y

e—~0t €
T—a,y—>b(ycK>)

0.

We denote by f, : K1 — R, the following continuous differentiable function given by
fo(z) = f (z,b).

Then, using Propositions B.10 and B.11, we can deduce the following estimate, for all

heRN:
f(z +¢eh,b) — f(z,b)

lim sug:_ . = fl? (a) (h) = f}(a) (h)
= lim ReleteW) Zf(e) _ oy, Flatehb) - f(ah)
-0t £ g0t £

— £ (a,b) (h,0) = £ (a,b) (h,0) = lim sup LEFERY) = S(@:Y)

e—07F £
z—oa,y—b
; hoy) —
e—0*F £
z—a,y—b(yEKa)
Hence,
h,b) — b
lim sup LEFEMY =/ @Y (14)
=0T €

T—a

Following the same argument as in the case B, we obtain a contradiction. SoVh; € Tk, (a),
DY f(a,b) (h1) 2 0.

The next step is to prove that for every ho € Tk, (b) , D¥g (a,b) (ha) > 0.

Since there exists pg € N* s.t. y? = b,Vp > po it follows that g% (z¥,yP) = g% (zP,b) =
Oa Vp 2> Do-
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Let hy € Sk, (b) be chosen arbitrarily, let € > 0 be s.t. b+¢chy € Ko (it is possible because
b € intKy). By [13], we can write that

3

D??Ug (aa b) (h’Z) > D;g (a) b) (h’Z) yho € SK'Z (b) . (15)
. SO L
Having the last inequality in mind, we shall prove that D3g (a,b) (hy) > 0.
Denote by g, : K2 = R, the function defined as g, (y) = g (2?,y), where p > py is fixed.
According to the Propositions B.9 and B.10, we can infer that

0 = (Vg (42,5), (0,chy)) = <g—g (%, b) ,eh2> - <%‘Jg (b) ,eh2>

= g, (0) (eh2) < gp (b+ cha) — gy (b) = g (2P, b + cha) — g (P, ).
Hence, for every p > pq, we got g (2P, b + chy) — g (2P, b) > 0. Lettifig p*— oo, we obtain
g9(a,b+¢eh2) —g(a,b) > 0.

So

D3g(a,b) (hy) :=lim inf < (a,b + ehy) ~ g (a,b)
g0t £
b+eha €Ky

> 0. (16)

Because hy € Sk, (b) was chosen arbitrarily, relations (15) and (16) imply
D%Ug (aab) (h2) 2> 07Vh2 € SKz (b) .
Because of the continuity with respect to ho, one can obtain that

DY g (a,b) (he) > 0,Vhy € Tk, (b).
[RER
Again, according to the Proposition B.6, we have that (a,b) is a Nash equilibrium point.
Case D: There exists a subsequence, denoted similarly (z?,4?),po € N* s. t. 2P =
aavp ZPO,yp # b’vp € N*.
The prove is similarly with that of case C, so we can conclude that (a,b) is a Nash
equilibrium point.
Since all the possible situations were analyzed, we can say that (a,b) is a Nash equilibrium
point for the problem (P). W

D.3 Proof of the relaxation-type theorem

The prove of the Theorem C.5 follows the same idea as the proof of the Theorem C.4.

E Illustrative example

Let us consider the following 2-player noncooperative game example.
Consider the game given by

F:00,2] x [1,3] = R, f(z,y) =222 — 2zy + 5y° — 62 — 6y

9:[0,2] x [1,3] = R, g(z,y) = 2° + 2y +y° — 3z — 6y.

These functions satisfy the assumptions of the problem (P).
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First, let us compute the Nash equilibrium point exactly. Denote by («,b) € [0,2] x {1, 3]
the Nash equilibrium. So,
i (av b) </ (T7b) VI € [07 2]
g(a,b) < g(a,y),Vy €[L,3]

2a* — 2ab + 5b% — 6a — 6b < 222 — 22b 4 5b% — 67 — 6b,Vz € [0, 2]
a?+ab+ b —3a—6b < a? 4 ay + y? — 3a — 6y, Yy € [1, 3]

Le., {
Ny 2 —z){a+z)—2b(a—2z)—6(a—x) <0,Vz €]0,2]
alb—y)+(b—y)(b+y)—-6(b—y) <0,vye[lL3]

(a—z)2(a+2z)—-2b—-6] <0,Vz €[0,2]
(b—y)[(b+y)+a~6<0,¥y€[1,3]

(a—2){z+(a-b—-3)] <0,Vz €]0,2]
(b—y)ly+(a+b-6)]<0,vye (L3

Notice that the following relation is satisfied

= {

= {

4 (a—0—-3) £0,Vz €[0,2],Ya € {0,2],Vb € [1,3].
Hence, we only have to impose the condition
a—z>0,Yz €[0,2] which gives a = 2.
Under this circumstance, the second inequality of the system (17) becomes
b=y ly+(b—-4)]<0,vye1,3].

It is obvious that the condition we have to impose here is b = 4 — b. This means b = 2.

As a conclusion, the Nash equilibrium point is N (2,2).

Now, let us apply the numerical algorithms presented in the paper. The evolutions of the
game under the gradient-type and the relaxation-type algorithm are depicted in Figure 1 and
Figure 2, respectively. The starting point was chosen as (0.2;1.2). Moreover, for the sake of
simplicity, the original gradient-type and relaxation-type algorithm were modified a little, in
order to avoid solving maximization problems. The stepsizes a,,b, were considered to be the
biggest stepsizes which satisfy both conditions: the new generated point is inside the interval
and the function value is less at this new point than the value at the old point.

For this particular example, it is observed that the relaxation-type algorithm reaches the
Nash equilibrium in fewer steps than gradient-type algorithm. _

Finally, let us solve the same problem with the algorithms proposed by S. Li and T. Basar
([14]) and S. Uryas’ev and R. Rubinstein ([18]). Figure 3 and 4 presents the results, respec-
tively. We need to emphasize that, in the last two numerical algorithms, the corresponding
minimization/maximization problems were solved exactly.

F Conclusions

We have developed two numerical methods for computation of Nash equilibria. As the
numerical example shows, the results are quite satisfactory. Plus, we can underline some
remarks. First, the gradient-type and relaxation-type algorithms do not require much infor-
mation, only the expressions of the functions and their gradients. Second, because the stepsize
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search may be simplified, as we did in our example, the implementation of these numerical
methods becomes trivial. We may conclude that the two numerical methods presented here
can be successfully applied to all noncooperative games.
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