1. An atom of chlorine with an extra electron (17 protons, 18 neutrons, 18 electrons) is moving north at $.072 \mathrm{~m} / \mathrm{s}$. What is the strength and direction of the magnetic field it is moving through if the atom stays at a constant distance above the earth's surface?
2.

1) What is the value of C_{1} which allows the maximum current in the circuit?
2) What is that max current?
3) What would be the average power using that current?
3. An open LR circuit has an EMF of 3 mV , a resistor of $4.4 \mathrm{~m} \Omega$, and an air core solenoid with 350 turns, a 35 cm length, and a $5 \mathrm{~cm}^{2}$ cross-sectional area. How long after the circuit closes does the current reach 0.6 amps ?
4. A capacitor has its parallel plates separated by a distance of 0.25 cm . The magnitude of the electric field between the plates is $3600 \mathrm{~N} / \mathrm{C}$ when $6.75 \mu \mathrm{C}$ of charge accumulate on the plates. Find the capacitance.
5. A current carrying wire is bent in such a way that it has a semicircular portion 5.8 cm in diameter. 3 mA of current runs through the wire as shown below. Find the magnetic field at the center of the semicircle.

6. A screen has a double slit separated 0.05 mm . The distance between the central bright fringe and the first dark fringe is 5 cm . Find the wavelength of the light. The distance between the source and screen is 1.5 meters.
7. An electron microscope accelerates electrons to $5 \times 10^{\wedge} 6 \mathrm{~m} / \mathrm{s}$. Find the limiting angle if the effective diameter of the aperture is 1 mm .
8. Describe Maxwell's laws.
