Question 1 (1 point)
Draw the magnetic field lines emanating from a magnetic dipole. How does the shape of the field compare to that from an electric dipole?

Question 2 (3 points)
(a) A proton is moving at 12% of the speed of light in the direction which is 20 degrees up from west. It passes through the earth's magnetic field which points due north with a strength of $0.5 \times 10^{-4} \mathrm{~T}$. What is the resultant force on the proton? What will the radius of curvature of its path be?

$$
\begin{aligned}
& \text { (x) © } \mathrm{X} \text { (x) } \vec{F}=q \vec{v} x \vec{B} \longrightarrow|\vec{F}|=q|v||B| \sin \theta \\
& =\left(1.6 \times 10^{-27} \mathrm{~kg}\right)\left(3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}\right)\left(0.5 \times 10^{-4} \mathrm{~T}\right) \\
& =2.88 \times 10^{-16} \mathrm{~N} 20^{\circ} \text { west of down or } 70^{\circ} \text { down of west } \\
& r=\frac{m v}{q B}=\frac{\left(1.6 \times 10^{-27} \mathrm{~kg}\right)(.12)\left(3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}\right)}{\left(1.6 \times 10^{-19} \mathrm{C}\right)(0}=7500 \mathrm{~m}
\end{aligned}
$$

(b) A cyclotron is used to accelerate protons to a velocity of $35,000 \mathrm{~m} / \mathrm{s}$. If the magnetic field for the cyclotron is 0.75 Tesla, how large does the cyclotron have to be? If the protons are directed from the cyclotron to a velocity selector with the same magnetic field, what electric field is needed for the protons to pass through the selector?

$$
\begin{aligned}
& K E=1 / 2 m v^{2}=\frac{q^{2} B^{2} R^{2}}{2 m} \longrightarrow r=\frac{m v}{q B} \\
& r=\frac{\left(1.67 \times 10^{-27} \mathrm{~kg}\right)\left(35,000 \frac{\mathrm{~m}}{\mathrm{~s}}\right)}{\left(1.6 \times 10^{-19} \mathrm{C}\right)(0.75 \mathrm{~T})}=\mathbf{0 . 4 9 \mathrm { mm }} \\
& \begin{aligned}
v=\frac{E}{B} \longrightarrow E & =v B \\
& =\left(35,000 \frac{\mathrm{~m}}{\mathrm{~s}}\right)(0.75 \mathrm{~T})=2 \mathbf{2 6}, \mathbf{0 0 0} \frac{\mathrm{v}}{\mathrm{~m}}
\end{aligned}
\end{aligned}
$$

Question 3 (3 points)

A wire loop is bent into the shape of a square with each side of length 4.5 cm . The loop is placed horizontally on a tabletop with two of the sides oriented north/south and two of the sides oriented east/west. A battery is connected so that a current of 24 mA is produced around the loop; the current flows in the clockwise direction looking from the top. What is the force produced by the earth's magnetic field on each section of current-carrying wire? What is the overall torque on the loop? What would the torque be if the same length of wire were bent into a circle instead of a square (assuming the same current)?
$\vec{F}=I \vec{l} x \vec{B}$
$|\vec{F}|=(24 \mathrm{~mA})(4.5 \mathrm{~cm})\left(0.5 \times 10^{-4} \mathrm{~T}\right)$
$\overrightarrow{F_{1}}=5.4 \times 10^{-8} \mathrm{Nup} \quad \overrightarrow{F_{2}}=5.4 \times 10^{-8} \mathrm{~N}$ down

$$
\begin{array}{rlrl}
\text { Torque } & =I \vec{A} \times \vec{B} \\
& =(24 \mathrm{~mA})(0.045 \mathrm{~m})^{2}\left(0.5 \times 10^{-4} \mathrm{~T}\right) \\
& =\mathbf{2 . 4} \mathbf{x} \mathbf{1 0}^{-9} \boldsymbol{N} \cdot \boldsymbol{m} \text { East } & \\
& =I A \times B & & \\
& & \\
& =I\left(\frac{4}{\pi}\right) l_{\text {circle }}=\pi r^{2} B=\mathbf{x} \boldsymbol{x} \mathbf{1 0}^{-9} \boldsymbol{N} \cdot \boldsymbol{m} \text { East } & 4 l=\text { circumference }=2 \pi r \\
& & r=\frac{2 l}{\pi} \quad A=\pi\left(\frac{2 l}{\pi}\right)^{2} \\
& =\frac{4 l^{2}}{\pi}
\end{array}
$$

Question 4 (3 points)
a) A wire of length 24 cm is bent into a square and placed flat on a table. A current of 45 mA is passed through the wire in a counter-clockwise direction (looking from above).

What is the magnitude and direction of the resulting magnetic field at the center of the square?
$\vec{B}=\frac{\mu_{0} I}{4 \pi} \int \frac{d \vec{s} \times \hat{r}}{r^{2}}=\frac{\mu_{0} I}{4 \pi} \int \frac{d \vec{s} \hat{r} \sin \theta}{r^{2}} \rightarrow \sin \theta=\frac{l}{2 r} \rightarrow \frac{\mu_{0} I}{4 \pi} \int \frac{d \vec{s}(l)}{r^{2}(2 r)}=\frac{\mu_{0} I l}{8 \pi} \int \frac{d \vec{s}}{r^{3}}=\frac{\mu_{0} I l}{8 \pi} \int_{0}^{\frac{l}{2}} \frac{d \vec{s}}{\sqrt{s^{2}+\left(\frac{l}{2}\right)^{2}}}{ }^{3} \rightarrow$
From an integral table you can find that: $\int \frac{d x}{\sqrt{x^{2}+a^{2}}}=\frac{x}{a^{2} \sqrt{x^{2}+a^{2}}} \rightarrow|B|=\frac{\mu_{0} I l}{8 \pi} \frac{s}{\frac{l}{4} \sqrt{s^{2}+\left(\frac{l}{2}\right)^{2}}}=\frac{\mu_{0} I}{2 \pi \sqrt{2 l}}$

$$
|B|=\frac{\left(4 \pi \times 10^{-7}\right)(0.45 \mathrm{~mA})}{(2 \pi \sqrt{2})(0.03 \mathrm{~m})}=0.85 \mu T
$$

Part (b)

Two squares of wire like that in the previous question are placed side by side on a table with a distance of 8 cm between the closest sides of the two squares. A 45 mA current passes counterclockwise through both squares. What is the resulting force between the two squares? Is it attractive or repulsive?

1

3
4

There are no forces in the y direction.
There are four forces in the x direction.

$$
\begin{gathered}
F=\frac{\mu_{0} I^{2} l}{2 \pi} \frac{1}{r} \\
F_{13}(\text { attractive })=\frac{\left(4 \pi \times 10^{-7}\right)(0.45 m A)^{2}(0.06 m)}{2 \pi} \frac{1}{(0.14 m)} \\
F_{23}(\text { repulsive })=\frac{\left(4 \pi \times 10^{-7}\right)(0.45 m A)^{2}(0.06 m)}{2 \pi} \frac{1}{(0.08 m)} \\
F_{14}(\text { repulsive })=\frac{\left(4 \pi \times 10^{-7}\right)(0.45 m A)^{2}(0.06 m)}{2 \pi} \frac{1}{(0.20 m)}
\end{gathered}
$$

$$
\begin{gathered}
F_{24}(\text { attractive })=\frac{\left(4 \pi \times 10^{-7}\right)(0.45 \mathrm{~mA})^{2}(0.06 \mathrm{~m})}{2 \pi} \frac{1}{(0.14 \mathrm{~m})} \\
\sum F=\frac{\left(4 \pi \times 10^{-7}\right)(0.45 \mathrm{~mA})^{2}(0.06 \mathrm{~m})}{2 \pi}\left(\frac{1}{(0.14 \mathrm{~m})}-\frac{1}{(0.20 \mathrm{~m})}-\frac{1}{(0.08 \mathrm{~m})}+\frac{1}{(0.14 \mathrm{~m})}\right)=7.8 \times 10^{-11} \mathrm{~N}
\end{gathered}
$$

This is an overall repulsive force between the two squares.

