Practice Problem Set 4 - With Solutions

Question 1 (1 point)

What is Lenz's Law? To which basic principle of physics is it most closely related?

1) Lenz's law = The induced current in a loop is in the direction that creates a magnetic field that opposes the change in magnetic flux through the area enclosed by the loop.

It is closely related to conservation of energy.

Question 2 (3 points)

A circular coil of wire with 350 turns and a radius of 7.5 cm is placed horizontally on a table. A uniform magnetic field pointing directly up is slowly turned on, such that the strength of the magnetic field can be expressed as a function of time as: $\mathbf{B}(\mathbf{t})=\mathbf{0 . 0 2}\left(\mathbf{T} / \mathrm{s}^{2}\right) \times$ t^{2}. What is the total EMF in the coil as a function of time? In which direction does the current flow?
2) $\operatorname{EMF}=(-\mathrm{N}) *\left(\mathrm{pi} * \mathrm{r}^{\wedge} 2\right) *(\mathrm{~d} / \mathrm{dt} \mathrm{B})=-350 * \mathrm{pi}^{*}(0.075 \mathrm{~m})^{\wedge} 2 * 2 * 0.020 \mathrm{~T} * \mathrm{t}$ $=-.25 \mathrm{t}(\mathrm{Tm} \wedge 2 / \mathrm{s} \wedge 2)$ $=-.25 \mathrm{t} \mathrm{V} / \mathrm{s}$
Clockwise - looking from the top

Question 3 (3 points)

A metal bar with a resistance of $\mathbf{3 0} \boldsymbol{\Omega}$ is rotated around its center in a magnetic field of strength 0.5 T which is oriented perpendicularly to the plane of the bar's rotation. If the bar makes 3 full rotations per second, what is the electrical power dissipated in the resistor?
3) $\mathrm{P}=\mathrm{E} \wedge 2(<--\mathrm{EMF}) / \mathrm{R}$
$\mathrm{dE}=\mathrm{Bvdr}$
E = Intergal of Bvdr
E = B * Intergal of vdr
$=$ Bw Intrgal of rdr going from $-1 / 2$ to $1 / 2$
$=B w\left(1 / 2 r^{\wedge} 2\right)$ with limits from $-1 / 2$ to $1 / 2$
For the First Half of the Rod:
$\mathrm{E}(\mathrm{EMF})=\mathrm{Bw}\left(1 / 2 \mathrm{r}^{\wedge} 2\right)$ with limits zero to $\mathrm{l} / 2$

$$
\begin{aligned}
& =\mathrm{Bw} * 1 / 2 *(\mathrm{l} / 2)^{\wedge} 2-0 \\
& =1 / 8 \mathrm{~B} * \mathrm{w} * \mathrm{l} 2 \\
& =.375 * \mathrm{pi}^{*} \mathrm{l}^{\wedge 2}(\text { Units: } \mathrm{Tm} \wedge 2 / \mathrm{s})
\end{aligned}
$$

For the Second Half of the Rod:
E (EMF) = Bw ($1 / 2 \mathrm{r}^{\wedge} 2$) with limits zero to l/ 2

$$
\begin{aligned}
& =\mathrm{BW} * 1 / 2 *(\mathrm{l} / 2)^{\wedge} 2-0 \\
& =1 / 8 \mathrm{~B} * \mathrm{w} * \mathrm{l} 2 \\
& =.375 * \mathrm{pi} * l \wedge 2(\text { Units: } \mathrm{Tm} \wedge 2 / \mathrm{s})
\end{aligned}
$$

Electric Power $=\mathrm{P}=$ first half power + second half power
$=E M F \wedge 2 / R+E M F \wedge 2 / R$
$=\left[\left(375 * \mathrm{pi}^{*} 1^{\wedge} 2\left(\text { Units: } \mathrm{Tm}^{\wedge} 2 / \mathrm{s}\right)\right)^{\wedge} 2 /(30 \Omega)\right]+\left(375 * \mathrm{pi}^{*} 1^{\wedge} 2\right.$ (Units:
$\left.\left.\left.\mathrm{Tm}^{\wedge} 2 / \mathrm{s}\right)\right)^{\wedge} 2 /(30 \Omega)\right]$

$$
=.093 \mathrm{l} \wedge 4 \mathrm{w} / \mathrm{m} \wedge 4
$$

Question 4 (3 points)

Use Gauss' Law and Ampere's Law to find both the capacitance per unit length and the inductance per unit length of a coaxial cable with an outer radius of $\mathbf{4 . 5} \mathbf{~ m m}$ and an inner radius of 1.5 mm . Assume the space between the two conductors is filled with air. An AC generator with a variable frequency is connected across a 45 cm piece of the coaxial cable. If the cable has minimal resistance, at what frequency will the cable resonate?

- Solving for capacitance per unit length:

$$
\begin{aligned}
& \oiint \vec{E} \cdot d \vec{A} \\
& \oiint|E||d A|=\frac{q}{\varepsilon_{0}} \\
& |E|=\frac{q}{\varepsilon_{0} \oiint d A}=\frac{q}{\varepsilon_{0}}=\frac{q}{\varepsilon_{0} 2 \pi r l}
\end{aligned}
$$

$$
V=\int \vec{E} \cdot d \vec{s}=\int_{r_{1}}^{r_{2}} \vec{E} \cdot d \vec{r}=\int_{r_{1}}^{r_{2}}|E| d r=\int_{r_{1}}^{r_{2}} \frac{q d r}{\varepsilon_{0} 2 \pi r l}=\frac{q}{\varepsilon_{0} 2 \pi l} \int_{r_{1}}^{r_{2}} \frac{d r}{r}=\frac{q}{\varepsilon_{0} 2 \pi l}\left(\ln \left(\frac{r_{2}}{r_{1}}\right)\right)
$$

$$
C=\frac{Q}{r}=\frac{q}{\frac{q}{\varepsilon_{0} 2 \pi r l} \ln \left(\frac{r_{2}}{r_{1}}\right)}=\frac{\varepsilon_{0} 2 \pi r l}{\ln \left(\frac{r_{2}}{r_{1}}\right)}
$$

$$
\frac{C}{l}=\frac{\varepsilon_{0} 2 \pi r}{\ln \left(\frac{r_{2}}{r_{1}}\right)}=\frac{2 \pi\left(8.85 \times 10^{-12} \frac{C^{2}}{N \cdot m^{2}}\right)}{\ln (3)}=50.6 \frac{p F}{m} \text { or } 5.06 \times 10^{-11} \frac{F}{m}
$$

- Solving for Inductance per unit length:

$$
\begin{aligned}
& \oint \vec{B} \cdot d \vec{s}=\mu_{0} I \\
& \oint|B||d s|=\mu_{0} I \\
& |B|=\frac{\mu_{0} I}{2 \pi r}
\end{aligned}
$$

$$
\frac{L}{l}=\frac{\Phi_{B}}{I l}=\frac{\oiint \vec{E} \cdot d \vec{A}}{I l}=\frac{\oiint|E||d A|}{I l}=\frac{\oiint|B| l d r}{I l}=\frac{\oiint|B| d r}{I}=\frac{\oiint \frac{\mu_{0} I}{2 \pi r} d r}{I}
$$

$$
=\frac{\mu_{0}}{2 \pi} \int \frac{d r}{r}=\frac{\mu_{0}}{2 \pi} \boldsymbol{\operatorname { l n }}\left(\frac{r_{2}}{r_{1}}\right)=\frac{4 \pi \times 10^{-7} \frac{T \cdot m}{A}}{2 \pi} \ln (3)=2.2 \times 10^{-7} \frac{\boldsymbol{H}}{\boldsymbol{m}}
$$

Solving for frequency gives:

$$
\omega_{0}=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{l^{2} L C}}=\frac{1}{\sqrt{(.45)^{2}\left(2.2 \times 10^{-7} \frac{H}{m}\right)\left(5.06 \times 10^{-11} \frac{F}{m}\right)}}=670 \mathrm{MHz}
$$

