1. An electron is moving at $45,000 \mathrm{~m} / \mathrm{s}$ towards the south-east. The earth's magnetic field points due north with a strength of $0.5 \times 10^{-4} \mathrm{~T}$. What force does the earth's magnetic field exert on the moving electron?
2. An expandable circular wire ring is placed flat on a table on which a magnetic field with strength 0.65 T points downwards. The ring is expanded slowly so that its radius can be expressed as a function of time as: $r=(0.4 \mathrm{~mm} / \mathrm{s})$ t. If the ring has a total resistance of 35 Ω, what is the strength and direction of the current induced due to the expansion at the time of 4 seconds
3. A wire of length 45 cm is bent into an equilateral triangle and placed flat on a table. A current of 25 mA passes through the wire in a clockwise direction (looking from the top). Find the magnitude and direction of the magnetic field at the center of the triangle.
4. A solenoid has a cross sectional area of $5.5 \times 10^{-4} \mathrm{~m}^{2}$ it has 340 turns and is 12 cm long. The solenoid is placed in series with a capacitor to form a circuit which resonates at a rate of 450,000 cycles per second. What is the capacitance of the capacitor?
5. An electromagnetic plane wave a certain location has an electric field pointed up which is given as a function of time as $\mathrm{E}=54 \mathrm{~V} / \mathrm{m} \times \sin \left(6 \times 10^{6} \mathrm{~Hz} \times \mathrm{t}\right)$. The magnetic field at the same location points south when the electric field points up. What is the pointing vector at this location for this wave as a function of time?
6. A plane electromagnetic wave is travelling southward. At a specific time and place, the electric field from the wave points upwards with a magnitude of $63 \mathrm{~V} / \mathrm{m}$. What is the magnitude of the magnetic field at the same point in time?
7. A series $R L C$ circuit has $R=425 \Omega$, and $C=3.50 \mu \mathrm{~F}$. It is connected to an AC source with $f=60.0 \mathrm{~Hz}$ and $\Delta \mathrm{V}_{\max }=150 \mathrm{~V}$. What should be the inductance such that the current leads the applied voltage by 30.0° ? All other values remain constant.
