Section 3.1: Measures of Center

In statistics we frequently need to perform operations on entire sets of data. One such operation is to add all values in a particular set together. We use a capital Greek sigma, Σ, to tell us to add everything together. So \sum Chris' test scores is $79+88+92=259$.

MATH 1107 Chris	Tests	Quizzes
	79	95
	88	86
	92	75
		89
		81

If the data set in question is obvious we may just write $\sum x$ where x represents every value is the data set. The sum of Chris' quiz scores is $\sum x=95+86+$ $75+89+81=426$.

Example 1 For Chris' test scores, $\sum x^{2}=79^{2}+88^{2}+92^{2}=22449$. In contrast, $\left(\sum x\right)^{2}=(79+88+92)^{2}=259^{2}=67081$.

1 The Mean

Definition 1 The mean (also known as the average) in a set of n observations, $x_{1}, x_{2}, \ldots, x_{n}$, is

$$
\begin{equation*}
\frac{\sum x_{i}}{n} . \tag{1}
\end{equation*}
$$

Notation 1 The mean is always calculated as the sum of all observations divided by the number of observations. However we may want to indicate if the average comes from a sample or a population. We denote a sample average by \bar{x} and a population average by μ.

Example 2 The mean test score for Chris is $\mu=\frac{\sum x_{i}}{n}=\frac{79+88+92}{3}=$ $\frac{259}{3}=86.333$

Problem 2 Find the mean quiz score for Chris.

2 The Median

Definition 2 The median in a set of n observations that are ordered from smallest to largest is the middle observation (if n is odd) or the mean of the two middle observations (if n is even).

Example 3 To determine the median quiz score by Chris we first order the data from smallest to largest:

$$
75,81,86,89,95
$$

Now it is clear that the middle observation, and hence the median, is 86.
In the case of Chris' quiz scores the median and the mean are pretty close to each other. That won't always be the case!

Example 4 In CHEM 1101, Chris took six quizzes. His scores are: 81, 76, 82, 78, 12, 75. Again, we order the scores from smallest to largest.

$$
12,75,76,78,81,82
$$

Here we average the two middle most observations and the median is $\frac{76+78}{\sum^{2}}=$ 77. Just for fun, Chris' average quiz score in CHEM 1101 is $\mu=\frac{\sum^{2} x_{i}}{n}=$ $\frac{12+75+76+78+81+82}{6}=\frac{202}{3}=67.333$.

Problem 3 Here the median and mean are not very close to each other. Why?
Definition 3 A statistic is resistant if its value is not susceptible to extreme data points.

Take note that the median cuts the data set in half. That is, 50% of the data in the set falls below the median and 50% of the date falls above the median. This is not necessarily true about the average.

Example 5 Consider the player salaries for the 1997-1998 Chicago Bulls roster. Here the average salary is almost three times the median salary. This is due to Michael Jordan's salary which is significantly larger (though he was still underpaid!) than all other salaries.

Player	Salary
1 Michael Jordan	$\$ 33,140,000$
2 Ron Harper	$\$ 4,560,000$
3 Toni Kukoc	$\$ 4,560,000$
4 Dennis Rodman	$\$ 4,500,000$
5 Luc Longley	$\$ 3,184,900$
6 Scottie Pippen	$\$ 2,775,000$
7 Bill Wennington	$\$ 1,800,000$
8 Scott Burrell	$\$ 1,430,000$
9 Randy Brown	$\$ 1,260,000$
10 Robert Parish	$\$ 1,150,000$
11 Jason Caffey	$\$ 850,920$
12 Steve Kerr	$\$ 750,000$
13 Keith Booth	$\$ 597,600$
14 Jud Buechler	$\$ 500,000$
15 Joe Kleine	$\$ 272,250$
Average	$\$ 4,088,711$
Median	$\$ 1,430,000$
Chicago Bulls	
1997-1998	Salaries
Season	

Remark 4 The median is resistant. The mean is not resistant.

3 The Mode

Definition 4 The mode in a set of n observations is the value that occurs most frequently. A data set may have more than one mode. A data set with two modes is called bimodal. A data set with more than two modes is called multi-modal.

Example 6 There is no mode for Chris for either test scores or quiz scores. There is no value that appears more frequently than any other.

Example 7 The mode of number of games played for the 2012 Atlanta Hawks is 77. The mode for games started is 0 .

Rk	Player	Age	G	GS	MP	FG	FGA	FG\%	3P	3PA	3P\%	FT	FTA	FT\%	ORB	DRB	TRB	AST	STL	BLK	TOV	PF	PTS
1.	Joe Johnson	29	72	72	2554	514	1161	. 443	89	300	. 297	195	243	. 802	59	232	291	338	47	7	146	131	1312
2	Josh Smith	25	77	77	2645	497	1041	. 477	51	154	. 331	229	316	. 725	134	523	657	255	99	120	197	217	1274
3	Al Horford	24	77	77	2704	513	921	. 557	2	4	. 500	150	188	. 798	182	536	718	266	59	80	119	193	1178
4	Jamal Crawford	30	76	0	2297	368	874	. 421	119	349	. 341	222	260	. 854	22	108	130	241	57	14	145	97	1077
5	Marvin Williams	24	$\underline{65}$	52	1865	246	537	. 458	37	110	. 336	147	174	. 845	68	245	313	88	34	23	62	104	676
6	Mike Bibby	32	56	56	1674	192	441	. 435	113	256	. 441	29	46	. 630	15	128	143	202	38	6	68	125	526
7	Jeff Teaque	22	70	7	963	133	304	. 438	18	48	. 375	77	97	. 794	11	91	102	138	45	25	64	82	361
8	Zaza Pachulia	26	79	7	1244	107	232	. 461	0	0		135	179	. 754	119	214	333	58	34	22	69	184	349
9	Josh Powell	28	$\underline{54}$	0	653	94	208	. 452	0	1	. 000	36	45	. 800	49	86	135	22	5	5	53	78	224
10	Maurice Evans	32	47	12	837	79	201	. 393	28	89	. 315	24	28	. 857	23	61	84	30	16	5	15	74	210
11	Kirk Hinrich	30	$\underline{24}$	22	686	80	185	. 432	32	76	. 421	14	21	. 667	7	46	53	78	19	7	37	66	206
12	Damien Wilkins	31	$\underline{52}$	0	676	69	137	. 504	2	10	. 200	40	56	. 714	23	67	90	41	27	9	21	72	180
13	Jason Collins	32	49	28	593	34	71	. 479	1	1	1.000	27	41	. 659	30	72	102	22	9	9	26	97	96
14	Jordan Crawford	22	16	0	160	27	77	. 351	9	27	. 333	4	6	. 667	9	19	28	15	3	0	15	13	67
15	Etan Thomas	32	13	0	82	10	21	. 476	0	0		12	15	. 800	6	17	23	2	1	4	5	11	32
16	Hilton Armstrona	26	12	0	76	6	12	. 500	1	1	1.000	2	10	. 200	3	14	17	4	3	5	3	9	15
17	Pape Sy	22	3.	0	21	2	6	. 333	0	1	. 000	3	3	1.000	2	1	3	2	1	0	3	1	7

2011 Atlanta Hawks Team Statistics

One cannot compute a mean or median for qualitative data. It is possible to compute the mode for qualitative data.

Problem 5 A small bag of MBM's contained the following 20 candies. Find the mode for color of $M \mathcal{B} M$.

red	green	blue	red	brown
red	brown	brown	orange	green
orange	orange	green	green	blue
green	green	brown	red	red

4 Missing Data

Example 8 Chris thought he only had three test scores in MATH 1107: 79, 88 and 92. Turns out, he misplaced one test. If his mean test score is 86, what score did Chris earn on the misplaced test?
Let x represent the missing test score. Using the formula for a mean, we know that

$$
\begin{aligned}
86 & =\frac{79+88+92+x}{4} \\
86 & =\frac{259+x}{4} \\
344 & =259+x \\
85 & =x
\end{aligned}
$$

5 Trimmed Means

Definition 5 The $p \%$ trimmed mean is found by first trimming (removing) the top $p \%$ and bottom $p \%$ of the data set. Second, compute the mean of the remaining values.

Example 9 Let $S=\{3,4,4,5,6,6,7,8,15,30\}$ The mean of S is $\frac{3+4+4+5+6+6+7+8+15+30}{10}=$ 8.8. The 20% trimmed mean of S is $\frac{4+5+6+6+7+8}{6}=6$. Note that the trimmed mean removes outliers.

6 The Proportion of Success

Definition 6 For a data set where each outcome can be classified as a success or failure, the proportion of success is a measure of center. The proportion of success is computed by the number of successes in the data set divided by the number of observations.

Example 10 A single die is rolled 10 times. The sequence of rolls is $(1,4,5,6,3,4,5,2,3,2)$. If a success is rolling an odd prime number then the proportion of success is $p=\frac{4}{10}=0.4$.

Problem 6 If a success is rolling a perfect square, what is the proportion of success for the above sequence?

7 Using \mathbf{R} to compute numerical statistics

We first create a vector of data for computing purposes. I have named my data set "list." Computing mean and median is as simple as it appears; call the command and indicate a data set. Note that trimmed mean requires an extra parameter. R Studio has no mode command. I've listed a couple of extra examples of commands for the next section.

```
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> list = c(2, 4, 4, 4, 5, 5, 7, 9, 10, 57)
> mean(list)
[1] 10.7
> median(list)
[1] 5
> mean(list, trim=0.1)
[1] 6
> var(list)
[1] 270.6778
> sd(list)
[1] 16.45229
> range(list)
[1] 2 57
> |
```

What if you have a dat set with more than one variable such as the Bull's Salaries? Load the Excel file into R using the import dataset button and browse feature.

and we get

To select one variable in a dataset we designate it with a "\$."

```
> summary(bulls_salaries)
    Rk name Salary
    Min. : 1.0 Length:15 Min. : 272000
    1st Qu.: 4.5 Class :character 1st Qu.: 800460
    Median : 8.0 Mode :character Median : 1430000
    Mean : 8.0 Mean : 4088695
    3rd Qu.:11.5 3rd Qu.: 3842450
    Max. :15.0 Max. :33140000
> mean(bul1s_salaries$5alary)
[1] 4088695
> median(bul1s_salaries$Salary)
[1] 1430000
> mean(bul1s_salaries$name)
[1] NA
Warning message:
In mean.default(bul1s_salaries$name) :
    argument is not numeric or logical: returning NA
> mean(bulls_salaries$salary, trim=0.1)
[1] 2147571
```


8 Exercises

1. Kokoska 3rd edition Section 3.1: 3.2, 3.3 a , b, e, f, 3.6, 3.7 a , b, 3.8, 3.10a, 3.12
2. Compute the 10% trimmed mean for the '97-'98 Chicago Bulls.
3. If possible, create a set of 10 integer data points between 0 and 10 such that 90% of the data is less than the mean. Your data points need not be unique. If not posssible, explain why.
4. If possible, create a set of 10 integer data points between 0 and 10 such that 90% of the data is less than the median. Your data points need not be unique. If not posssible, explain why.
5. Is it possible for John to lead the NFL in total rushing yards but for Nick to lead in average rushing yards per game played in the same season? If yes, construct a set of data that demonstrates it is possible. If no, explain why not. HINT! It is possible.
