## Section 3.3: The Empirical Rule and Measures of Relative Standing

The mean and standard deviation tell us a lot about the spread of data from the center. Chebyshev's inequality indicates an approximate percentage of data that falls within a certain number of standard deviations of the mean. The interval $\bar{x} \pm k s$ for samples or $\mu \pm k \sigma$ for populations captures values that fall within $k$ standard deviations of the mean.

## 1 Chebyshev's inequality

Theorem 1 Chebyshev's inequality: For every distribution of data, at least $1-\frac{1}{k^{2}}$ percent of the data falls within $k$ standard deviations of the mean for all $k>1$.

The most common values used in Chebyshev's inequality are $k=2$ or $k=3$.
At least $1-\frac{1}{2^{2}}=1-\frac{1}{4}=.75=75 \%$ of the data falls within 2 standard deviations of the mean.

At least $1-\frac{1}{3^{2}}=1-\frac{1}{9}=.889=88.9 \%$ of the data falls within 3 standard deviations of the mean.

Problem 2 Consider a class whose test results have an average of 80 and a standard deviation of 6 . What percentage of students earned a grade between 70 and 90?
The difference from the mean to either endpoint is 10 . So $k=\frac{10}{6} \approx 1.67$. So at least $1-\frac{1}{1.67^{2}} \approx 0.641=64.1 \%$ of the scores fall between 70 and 90 .
Problem 3 Consider a class whose test results have an average of 78 and a standard deviation of 10 . What percentage of students earned a grade between 58 and 98?

Problem 4 Consider a class whose test results have an average of 78 and a standard deviation of 10. What percentage of students earned a grade between below 58?

Problem 5 Par on the Jurassic Mini Golf Course (http://myrtlebeachfamilygolf.com/jurassicgolf/) in Myrtle Beach, SC is 44 strokes with a standard deviation of 8.
At least $88.9 \%$ of the scores fall into what interval?

What percentage of scores fall between 20 and 68 ?

The strength of Chebyshev's inequality is also its weakness. It always works. That's why its conclusion is a lower bound on the amount of data that must be contained within $k$ standard deviations of the mean. If we know more about a specific distribution then we can greatly improve on the result of Chebyshev.

## 2 The Empirical Rule (68-95-99.7 Rule)

For data distributions that have a bell-shape distribution (normal curve), the mean and standard deviation tell us a lot about the spread of data from the center.

Theorem 6 The Empirical Rule (68-95-99.7 Rule) states that every normal distribution $68 \%$ of the data falls within one standard deviation of the mean, $95 \%$ of the data falls within two standard deviations of the mean and $99.7 \%$ of the data (almost all) falls within three standard deviations of the mean.


Remark 7 We frequently denote a normal distribution by $N(\mu, \sigma)$.
Example 8 Heights and weights of men and women follow a normal distribution.


Problem 9 Heights of men follow a normal distribution with an average of $69^{\prime \prime}$ and a standard deviation of $2.8^{\prime \prime}$ (I'm rounding to make the arithmetic easier).

This indicates that the central $68 \%$ of men are from to tall.

What percentage of men are between 60.6" and $77.4^{\prime \prime}$ tall?

What percentage of men are between $69^{\prime \prime}$ and $71.8^{\prime \prime}$ tall?

Problem 10 Consider a class whose test results have a distribution of $N(75,6)$.
What grades comprise the central $68 \%$ of the students?

What percentage of grades are between 75 and $81 ?$

What percentage of grades are between 81 and $87 ?$

What percentage of grades are below $57 ?$

If 2000 students took this test, how many students earned a grade less than $57 ?$

Problem 11 Do we use Chebyshev's inequality or the empirical rule to estimate the amount of data that falls within $k$ standard deviations of the mean for the variable of age at the beginning of the study from our health data set?


## 3 z-scores

We've used the empirical rule and Chebyshev's inequality to examine distributions of data. We use a z-score to measure the distance a value is from the mean relative to standard deviation.

$$
\begin{gathered}
z=\frac{x-\mu}{\sigma} \text { for populations } \\
z=\frac{x-\bar{x}}{s} \text { for samples }
\end{gathered}
$$

Example 12 Consider Math 1107/01, with a test 1 average of 10 and standard deviation of 2. Also, consider Math 1107/02 with a test 1 average of 150 and standard deviation of 15 . Use z-scores to determine which score is better, Chris who scored a 13 in Math 1107/01 or Debbie who scored a 180 in Math 1107/02? The $z$-score for Chris is $z=\frac{x-\mu}{\sigma}=\frac{13-10}{2}=1.5$. The $z$-score for Debbie is $z=\frac{x-\mu}{\sigma}=\frac{180-150}{15}=2.0$. Since $2>1.5$, Debbie has the better score.

Problem 13 Use z-scores to determine which score is better, Evan who scored a 12 in Math 1107/01 or Francine who scored a 160 in Math 1107/02?

Problem 14 Determine which score is better, a 14.5 in Math 1107/01 or a 133 in Math 1107/02? Do we really need to use a z-score for this problem?

Remark 15 The sign on a z-score is important! A negative z-score tells us that the data value is below the mean, while a positive z-score tells us that the data value is above the mean.

Example 16 What is the original test score for a z-score of -1.5 in Math 1107/01? We solve $-1.5=\frac{x-10}{2}$ for $x$ and find the test score $x=7$

Problem 17 What is the original test score for a z-score of - 2 in Math 1107/02?

Problem 18 Par on the Jurassic Mini Golf Course (http://myrtlebeachfamilygolf.com/jurassicgolf/) in Myrtle Beach, SC is 44 strokes with a standard deviation of 8. Par on the Captain Kidd's Challenge (http://www.piratesislandgolf.com/) in Hilton Head, SC is 56 strokes with a standard deviation of 12.

1. Which score is better, a 42 at Jurassic Golf or a 60 at Captain Kidd's Challenge?
2. Which score is better, a 50 at Jurassic Golf or a 60 at Captain Kidd's Challenge?

## 4 Exercises

1. Kokoska 3rd edition Section 3.3: 3.72-3.76, 3.78-3.81, 3.83, 3.84, 3.87, 3.93, 3.94, 3.103
