Section 5.1: Random Variables

1 Two Examples

Definition 1 A random variable is a function that assigns a numerical value to each outcome in a sample space.

Example 2 Consider the experiment of rolling a pair of dice and summing the faces. The random variable X assigns to each roll its sum. The following table indicates the probabilities for each value in X.

Sum	2	3	4	5	6	7	8	9	10	11	12
Prob	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

Example 3 Let Y be the random variable that assigns to each human being, their height in inches. Given the uncountably infinite number of possible heights, it is not possible to define Y based on a table.

There are two types of random variables, discrete and continuous, based on the data types assigned to values. The above two examples illustrate the different ways a random variable must be defined. Accordingly, different techniques will be needed to work with the two different types of random variables.

Problem 4 Consider the experiment of rolling a three sided-die and a 4-sided die and summing the faces. Construct a random variable X and the table that assigns to each sum the probability of attaining that sum.

2 Exercises

Kokoska 3rd edition Section 5.1: 5.10, 5.11, 5.15-5.17

Section 5.2: Probability Distributions for Discrete Random Variables

Definition 5 A probability distribution for a discrete random variable X is a function whose domain is all possible values of X and assigns to each $x \in X$ the probability that x occurs. Note that the sum of all probabilities in a distribution must be 1.

Problem 6 Is the following function a probability distribution? Explain.

X	1	2	3
P(X)	0.5	0.6	-0.1

Example 7 Consider the following probability distribution.

X	1	2	3	4	5	6
P(X)	0.3	0.2	0.1	0.1		0.2

- 1. P(X = 3) =
- 2. P(X = 4) =
- 3. P(X = 5) =
- 4. $P(X \le 3) =$
- 5. P(X < 3) =
- 6. $P(2 \le X \le 4) =$
- 7. P(X > 5) =

Problem 8 A \$2 lottery ticket offers four chances to win different amounts of money as indicated by the following probability distribution model.

Prize	\$0	\$0.5	\$1	\$5	\$50
Prob	$\frac{71}{100}$	$\frac{15}{100}$	$\frac{10}{100}$	$\frac{3}{100}$	$\frac{1}{100}$

- 1. What is the probability that a ticket wins nothing?
- 2. What is the probability that a ticket wins money but is a losing proposition overall?
- 3. Two people buy one ticket each. What is the probability that they both win nothing?
- 4. Two people buy one ticket each. What is the probability that they both win money?

- 5. Ten people buy one ticket each. What is the probability that at least one person wins money?
- 6. Five hundred people buy one ticket each. What is the probability that at least one person wins the \$50 prize?

Problem 9 You draw a card from a deck. If you get a club you get \$5. If you get an Ace you get \$10. For all other cards you receive nothing. Let X be the random variable of money won. Create a probability distribution model for this game.

Problem 10 You draw a card from a deck. If you get a club you get nothing. If you get red card you get \$10. If you get a spade you get \$15 and get to select another card (without replacement). If the second is another spade you receive an additional \$20. You receive nothing for any non-spade card. Create a probability model for this game.

3 Exercises

1. Kokoska 3rd edition Section 5.2: 5.30-5.33, 5.36, 5.37, 5.46 (let several=5)