Section 5.3: Mean and Standard Deviation for a Discrete Random Variable

After constructing a probability model, it is easy to determine the mean and standard deviation for the given experiment.

Definition 1 The expected value (or mean) of a discrete probability distribution is given by

$$E(X) = \sum_{x \in X} x * p(x).$$

Definition 2 The standard deviation of a discrete probability distribution is given by

$$\sigma = \sqrt{\sum_{x \in X} (x - E(X))^2 * p(x)}.$$

Example 3 Recall the experiment of rolling a pair of dice and summing the faces. The random variable X assigns to each roll its sum. The following table is our previously constructed probability model.

Sum	2	3	4	5	6	7	8	9	10	11	12
Prob	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

What is the expected value of the sum of a pair of dice?

$$\begin{split} E(X) &= \sum_{x \in X} x * p(x) \\ &= 2 * \frac{1}{36} + 3 * \frac{2}{36} + 4 * \frac{3}{36} + 5 * \frac{4}{36} + 6 * \frac{5}{36} + 7 * \frac{6}{36} \\ &+ 8 * \frac{5}{36} + 9 * \frac{4}{36} + 10 * \frac{3}{36} + 11 * \frac{2}{36} + 12 * \frac{1}{36} \\ &= \frac{2 + 6 + 12 + 20 + 30 + 42 + 40 + 36 + 30 + 22 + 12}{36} \\ &= 7. \end{split}$$

What is the standard deviation of the sum of a pair of dice?

Sum	2	3	4	5	6	7	8	9	10	11	12
$\left[\left(x - E(X) \right)^2 \right]$	25	16	9	4	1	0	1	4	9	16	25
Prob	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

$$\begin{split} \sigma^2 &= \sum_{x \in X} \left(x - E(X) \right)^2 * p(x) \\ &= 25 * \frac{1}{36} + 16 * \frac{2}{36} + 9 * \frac{3}{36} + 4 * \frac{4}{36} + 1 * \frac{5}{36} + 0 * \frac{6}{36} \\ &+ 1 * \frac{5}{36} + 4 * \frac{4}{36} + 9 * \frac{3}{36} + 16 * \frac{2}{36} + 25 * \frac{1}{36} \\ &= \frac{35}{6}. \end{split}$$

Thus, $\sigma = \sqrt{\frac{35}{6}} = 2.4152.$

Example 4 What is the probability that the sum of two dice falls within one standard deviation of the mean?

One standard deviation from the mean is $(7 \pm 2.4152) = (4.5848, 9.4152)$. So we could see a sum of 5, 6, 7, 8, or 9. This occurs with probability

$$p = \frac{4}{36} + \frac{5}{36} + \frac{6}{36} + \frac{5}{36} + \frac{4}{36} = \frac{2}{3} = 0.66667.$$

Problem 5 Determine the expected value and standard deviation for the following probability distribution W.

w	1	3	5	9
p(w)	$\frac{1}{10}$	$\frac{2}{10}$	$\frac{3}{10}$	$\frac{4}{10}$

Exercise 6 What is the probability that outcome falls more than one standard deviation away from the mean?

Exercise 7 A \$2 lottery ticket offers four chances to win different amounts of money as indicated by the following probability distribution model. Determine the expected value of buying a single ticket. Do you wish to play this game?

Prize	\$0	\$0.5	\$1	\$5	\$50
Prob	$\frac{71}{100}$	$\frac{15}{100}$	$\frac{10}{100}$	$\frac{3}{100}$	$\frac{1}{100}$
Value	-2	-1.5	-1	3	48

So,

$$E(X) = \sum_{x \in X} x * p(x)$$

= $-2 * \frac{71}{100} - 1.5 * \frac{15}{100} - 1 * \frac{10}{100} + 3 * \frac{3}{100} + 48 * \frac{1}{100}$
= $-1.175.$

I personally would not want to play this game with a negative expected value and such a small prize.

Exercise 8 What is the expected value of buying 50 such lottery tickets? -1.175 * 50 = -58.75.

Problem 9 You pay \$1 to play a game. The game consists of rolling a pair of dice. If you observe a sum of 7 or 11 you receive \$4. If not, you receive nothing. Compute the expected value and standard deviation for this game?

1 Exercises

Kokoska 3rd edition Section 5.3: 5.52-5.55, 5.62, 5.63, 5.67, 5.68, 5.75