Section 5.3: Mean and Standard Deviation for a Discrete Random Variable

After constructing a probability model, it is easy to determine the mean and standard deviation for the given experiment.

Definition 1 The expected value (or mean) of a discrete probability distribution is given by

$$
E(X)=\sum_{x \in X} x * p(x) .
$$

Definition 2 The standard deviation of a discrete probability distribution is given by

$$
\sigma=\sqrt{\sum_{x \in X}(x-E(X))^{2} * p(x)}
$$

Example 3 Recall the experiment of rolling a pair of dice and summing the faces. The random variable X assigns to each roll its sum. The following table is our previously constructed probability model.

Sum	2	3	4	5	6	7	8	9	10	11	12
Prob	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

What is the expected value of the sum of a pair of dice?

$$
\begin{aligned}
E(X)= & \sum_{x \in X} x * p(x) \\
= & 2 * \frac{1}{36}+3 * \frac{2}{36}+4 * \frac{3}{36}+5 * \frac{4}{36}+6 * \frac{5}{36}+7 * \frac{6}{36} \\
& +8 * \frac{5}{36}+9 * \frac{4}{36}+10 * \frac{3}{36}+11 * \frac{2}{36}+12 * \frac{1}{36} \\
= & \frac{2+6+12+20+30+42+40+36+30+22+12}{36} \\
= & 7 .
\end{aligned}
$$

What is the standard deviation of the sum of a pair of dice?

Sum	2	3	4	5	6	7	8	9	10	11	12
$(x-E(X))^{2}$	25	16	9	4	1	0	1	4	9	16	25
Prob	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

$$
\begin{aligned}
\sigma^{2}= & \sum_{x \in X}(x-E(X))^{2} * p(x) \\
= & 25 * \frac{1}{36}+16 * \frac{2}{36}+9 * \frac{3}{36}+4 * \frac{4}{36}+1 * \frac{5}{36}+0 * \frac{6}{36} \\
& +1 * \frac{5}{36}+4 * \frac{4}{36}+9 * \frac{3}{36}+16 * \frac{2}{36}+25 * \frac{1}{36} \\
= & \frac{35}{6}
\end{aligned}
$$

Thus, $\sigma=\sqrt{\frac{35}{6}}=2.4152$.
Example 4 What is the probability that the sum of two dice falls within one standard deviation of the mean?
One standard deviation from the mean is $(7 \pm 2.4152)=(4.5848,9.4152)$. So we could see a sum of 5, 6, 7, 8, or 9. This occurs with probability

$$
p=\frac{4}{36}+\frac{5}{36}+\frac{6}{36}+\frac{5}{36}+\frac{4}{36}=\frac{2}{3}=0.66667 .
$$

Problem 5 Determine the expected value and standard deviation for the following probability distribution W.

w	1	3	5	9
$p(w)$	$\frac{1}{10}$	$\frac{2}{10}$	$\frac{3}{10}$	$\frac{4}{10}$

Exercise 6 What is the probability that outcome falls more than one standard deviation away from the mean?

Exercise 7 A \$2 lottery ticket offers four chances to win different amounts of money as indicated by the following probability distribution model. Determine the expected value of buying a single ticket. Do you wish to play this game?

Prize	$\$ 0$	$\$ 0.5$	$\$ 1$	$\$ 5$	$\$ 50$
Prob	$\frac{71}{100}$	$\frac{15}{100}$	$\frac{10}{100}$	$\frac{3}{100}$	$\frac{1}{100}$
Value	-2	-1.5	-1	3	48

So,

$$
\begin{aligned}
E(X) & =\sum_{x \in X} x * p(x) \\
& =-2 * \frac{71}{100}-1.5 * \frac{15}{100}-1 * \frac{10}{100}+3 * \frac{3}{100}+48 * \frac{1}{100} \\
& =-1.175
\end{aligned}
$$

I personally would not want to play this game with a negative expected value and such a small prize.

Exercise 8 What is the expected value of buying 50 such lottery tickets? $-1.175 * 50=-58.75$.

Problem 9 You pay $\$ 1$ to play a game. The game consists of rolling a pair of dice. If you observe a sum of 7 or 11 you receive \$4. If not, you receive nothing. Compute the expected value and standard deviation for this game?

1 Exercises

Kokoska 3rd edition Section 5.3: 5.52-5.55, 5.62, 5.63, 5.67, 5.68, 5.75

