
Section 6.2: The Normal Curve

1 The Normal Distribution and the 68-95-99.7
Rule

The normal curve (also known as the bell curve) is the most common contin-
uous probability distribution. The normal curve is completely determined by
two parameters: mean and standard deviation. The normal curve is symmetric
about the mean which is also the median and the mode. Most data is clumped
in close to the mean.
The normal distribution is important since it tells us the amount of data that

falls in particular intervals relative to the mean and standard deviation. The
notation N(�; �) states that the data has a normal distribution with mean � and
a standard deviation �. We use the notation mean � and standard deviation �
to indicate that these are de�ning parameters for a statistical distribution rather
than statistical values we computed from a sample. For example, N(35; 2:3)
indicates a normal distribution with a mean of 35 and a standard deviation of
2.3.

Remark 1 The Kokoska text uses the very nonstandard format N(�; �2).

We�ve already worked with the Normal Curve via the Empirical Rule.

Theorem 2 The 68-95-99.7 Rule: In every normal distribution with mean
� and standard deviation �, approximately 68% of the data falls within one
standard deviation of the mean. Approximately 95% of the data falls within
two standard deviations of the mean. And �nally, approximately 99.7% (almost
everything) of the data falls within three standard deviations of the mean.

Problem 1 On test 1, Professor Russell�s class had an average score of 10
points with a standard deviation of 2 points. Assume these test grades follow a
normal distribution and explain.

What grades comprise the central 68% of the students in Professor Russell�s
class?

What grades comprise the central 99.7% of the students in Professor Russell�s
class?

The pdf for the normal curve is
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Finding area under the normal curve is not as simple as in section 6.1 when
working with triangles and rectangles. The probability that an observation

falls in the interval from a to b in the normal curve is
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Without resorting to integration, a useful tool for computing probabilities
in the normal curve is to convert to standardized units is the z-score

z =
x� �
�

:

When using a table from the book to compute normal curve values, z-scores
are needed. This is not the case when using technology.

2 The Normal Curve and the TI 83/84

The 68-95-99.7 rule is a nice beginning from which to explore the normal curve.
It would be greatly limiting if we could only work with z-scores of �1;�2 and
�3. Fortunately, technology allows us to work with any z-score in any normal
distribution.
The TI 83/84 series of calculators has two basic types of normal curve com-

mands;

1. Find the percentage p of data between two values z1 (lower bound) and
z2 (upper bound) in the normal distribution de�ned by � and �:
normalcdf(z1 (lower bound); z2 (upper bound); �; �)

2. Find the value z such that p percent of data falls below (to the left of) z
in the normal distribution de�ned by � and �:
invNorm(p; �; �). Recall that this is the pth percentile.

R Studio too has two basic types of normal curve commands;

1. Find the percentage p of data between two valuesbelow z in the normal
distribution de�ned by � and �:
pnorm(z; �; �)

2. Find the value z such that p percent of data falls below z in the normal
distribution de�ned by � and �:
qnorm(p; �; �). Recall that this is the pth percentile.

De�nition 3 The standard normal curve is the normal distribution where
� = 0 and � = 1.

Problem 2 What is the probability of an observation less than z = 1:34 in the
standard normal curve? pnorm(1:34; 0; 1)
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Problem 3 What is the probability of an observation between 0 and 1.34 in the
standard normal curve? pnorm(1:34; 0; 1)� pnorm(0; 0; 1)

Problem 4 Find the probability that an observation falls between 0 and .78 in
the standard normal curve?pnorm(:78; 0; 1)� pnorm(0; 0; 1)

Problem 5 What is the probability of an observation above 1.75 in the standard
normal curve? 1� pnorm(1:75; 0; 1)

Problem 6 In the standard normal curve, �nd P30. qnorm(:3; 0; 1)

Problem 7 In the standard normal curve, �nd P78. qnorm(:78; 0; 1)

Problem 8 Find the probability that an observation falls above -1.62 in a nor-
mal distribution where the mean is 2 and the standard deviation is 3. 1 �
pnorm(�1:62; 2; 3)

Problem 9 Consider a normal distribution where the mean is 56.8 and the
standard deviation is 5.5. What is the probability of an observation between 60
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and 70?pnorm(70; 56:8; 5:5)� pnorm(60; 56:8; 5:5)

Problem 10 Consider a normal distribution where the mean is 10 and the
standard deviation is 15. What is the probability of an observation larger than
20?

Problem 11 Consider a normal distribution where the mean is 55 and the
standard deviation is 15. What is the 63rd percentile?

Problem 12 Consider a normal distribution where the mean is 178.2 and the
standard deviation is 15.8. What is the 23rd percentile?
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3 Applications of the Normal Distribution

Problem 13 Scores on a particular test follow a normal distribution with a
mean of 75.6 and a standard deviation of 7.8.
i. What percentage of students scored above a 90?

ii. Find the score separating the top 15% of the scores from the bottom 85% of
scores.

iii. Between what two values do the central 40% of scores fall?

Problem 14 On a particular track team mile running times follow a nor-
mal distribution with a mean of 8.5 minutes and a standard deviation of 1.2
minutes.
i. What percentage of the track team runs a mile in under 7 minutes?

ii. What percentage of the track team runs a mile in between 8 and 9.3 minutes?

iii. What time separates the fastest 10% of the runners from the rest of the team?

iv. The slowest 20% of all runners will be cut from the team. How fast of a
mile does one need to run in order to stay on the team?
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4 Exercises

1. Kokoska 3rd edition Section 6.2: 6.31-6.33, 6.37, 6.39, 6.41, 6.42, 6.45,
6.47, 6.49, 6.51, 6.52, 6.54, 6.57, 6.59,
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