Section 3.1: Measures of Center

In statistics we frequently need to perform operations on entire sets of data. One such operation is to add all values in a particular set together. We use a capital Greek sigma, Σ , to tell us to add everything together. So Σ Chris' test scores is 79 + 88 + 92 = 259.

MATH 1107 Chris	Tests	Quizzes
	79	95
	88	86
	92	75
		89
		81

If the data set in question is obvious we may just write $\sum x$ where x represents every value is the data set. The sum of Chris' quiz scores is $\sum x = 95 + 86 + 75 + 89 + 81 = 426$.

1 The Mean

Definition 1 The mean (also known as the average) in a set of n observations, $x_1, x_2, ..., x_n$, is

$$\frac{\sum x_i}{n}.$$
 (1)

Notation 1 The mean is always calculated as the sum of all observations divided by the number of observations. However we may want to indicate if the average comes from a sample or a population. We denote a sample average by \overline{x} and a population average by μ .

Example 1 The mean test score for Chris is $\mu = \frac{\sum x_i}{n} = \frac{79 + 88 + 92}{3} = \frac{259}{3} = 86.333$

Problem 2 Find the mean quiz score for Chris.

2 The Median

Definition 2 The median in a set of n observations that are ordered from smallest to largest is the middle observation (if n is odd) or the mean of the two middle observations (if n is even).

Example 2 To determine the median quiz score by Chris we first order the data from smallest to largest:

Now it is clear that the middle observation, and hence the median, is 86.

In the case of Chris' quiz scores the median and the mean are pretty close to each other. That won't always be the case!

Example 3 In CHEM 1101, Chris took six quizzes. His scores are: 81, 76, 82, 78, 12, 75. Again, we order the scores from smallest to largest.

Here we average the two middle most observations and the median is $\frac{76+78}{2} = 77$. Just for fun, Chris' average quiz score in CHEM 1101 is $\mu = \frac{\sum x_i}{n} = \frac{12+75+76+78+81+82}{6} = \frac{202}{3} = 67.333.$

Problem 3 Here the median and mean are not very close to each other. Why?

Definition 3 A statistic is **resistant** if its value is not susceptible to extreme data points.

Take note that the median cuts the data set in half. That is, 50% of the data in the set falls below the median and 50% of the date falls above the median. This is not necessarily true about the average.

Example 4 Consider the player salaries for the 1997-1998 Chicago Bulls roster. Here the average salary is almost three times the median salary. This is due to Michael Jordan's salary which is significantly larger (though he was still underpaid!) than all other salaries.

	Player	Salary
1	Michael Jordan	\$33,140,000
2	Ron Harper	\$4,560,000
3	Toni Kukoc	\$4,560,000
4	Dennis Rodman	\$4,500,000
5	Luc Longley	\$3,184,900
6	Scottie Pippen	\$2,775,000
7	Bill Wennington	\$1,800,000
8	Scott Burrell	\$1,430,000
9	Randy Brown	\$1,260,000
10	Robert Parish	\$1,150,000
11	Jason Caffey	\$850,920
12	Steve Kerr	\$750,000
13	Keith Booth	\$597,600
14	Jud Buechler	\$500,000
15	Joe Kleine	\$272,250
	Average	\$4,088,711
	Median	\$1,430,000

Chicago Bulls Salaries 1997-1998 Season

Remark 4 The median is resistant. The mean is not resistant.

Take note of Steve Kerr's (relatively) small salary. It is interesting to note that Kerr's 2014 coaching deal with the Golden State Warriors was \$25,000,000 over five years (http://espn.go.com/nba/story/_/id/10933515/steve-kerr-accepts-golden-state-warriors-coaching-position). I wonder if there is any correlation between coach and player salaries for the same individual?

3 The Mode

Definition 4 The mode in a set of n observations is the value that occurs most frequently. A data set may have more than one mode. A data set with two modes is called **bimodal**. A data set with more than two modes is called multi-modal.

Example 5 There is no mode for Chris for either test scores or quiz scores. There is no value that appears more frequently than any other.

Example 6 The mode of number of games played for the 2012 Atlanta Hawks is 77. The mode for games started is 0.

Т	Totals Glossary · SHARE · Embed · CSV · PRE · LINK · ?																						
Rk	Player	Age	G	GS	MP	FG	FGA	FG%	ЗР	ЗРА	3P%	FT	FTA	FT%	ORB	DRB	TRB	AST	STL	BLK	тоу	PF	PTS
1	<u>Joe Johnson</u>	29	<u>72</u>	72	2554	514	1161	.443	89	300	.297	195	243	.802	59	232	291	338	47	7	146	131	1312
2	<u>Josh Smith</u>	25	<u>77</u>	77	2645	497	1041	.477	51	154	.331	229	316	.725	134	523	657	255	99	120	197	217	1274
3	Al Horford	24	<u>77</u>	77	2704	513	921	.557	2	4	.500	150	188	.798	182	536	718	266	59	80	119	193	1178
4	Jamal Crawford	30	<u>76</u>	0	2297	368	874	.421	119	349	.341	222	260	.854	22	108	130	241	57	14	145	97	1077
5	<u>Marvin Williams</u>	24	<u>65</u>	52	1865	246	537	.458	37	110	.336	147	174	.845	68	245	313	88	34	23	62	104	676
6	Mike Bibby	32	<u>56</u>	56	1674	192	441	.435	113	256	.441	29	46	.630	15	128	143	202	38	6	68	125	526
7	Jeff Teaque	22	<u>70</u>	7	963	133	304	.438	18	48	.375	77	97	.794	11	91	102	138	45	25	64	82	361
8	<u>Zaza Pachulia</u>	26	<u>79</u>	7	1244	107	232	.461	0	0		135	179	.754	119	214	333	58	34	22	69	184	349
9	Josh Powell	28	<u>54</u>	0	653	94	208	.452	0	1	.000	36	45	.800	49	86	135	22	5	5	53	78	224
10	Maurice Evans	32	<u>47</u>	12	837	79	201	.393	28	89	.315	24	28	.857	23	61	84	30	16	5	15	74	210
11	Kirk Hinrich	30	<u>24</u>	22	686	80	185	.432	32	76	.421	14	21	.667	7	46	53	78	19	7	37	66	206
12	<u>Damien Wilkins</u>	31	<u>52</u>	0	676	69	137	.504	2	10	.200	40	56	.714	23	67	90	41	27	9	21	72	180
13	Jason Collins	32	<u>49</u>	28	593	34	71	.479	1	1	1.000	27	41	.659	30	72	102	22	9	9	26	97	96
14	Jordan Crawford	22	<u>16</u>	0	160	27	77	.351	9	27	.333	4	6	.667	9	19	28	15	3	0	15	13	67
15	<u>Etan Thomas</u>	32	<u>13</u>	0	82	10	21	.476	0	0		12	15	.800	6	17	23	2	1	4	5	11	32
16	Hilton Armstrong	26	<u>12</u>	0	76	6	12	.500	1	1	1.000	2	10	.200	3	14	17	4	3	5	3	9	15
17	Pape Sy	22	<u>3</u>	0	21	2	6	.333	0	1	.000	3	3	1.000	2	1	3	2	1	0	3	1	7

2011 Atlanta Hawks Team Statistics

One cannot compute a mean or median for qualitative data. It is possible to compute the mode for qualitative data.

Problem 5 A small bag of M&M's contained the following 20 candies. Find the mode for color of M&M.

red	green	blue	red	brown
red	brown	brown	orange	green
orange	orange	green	green	blue
green	green	brown	red	red

4 Missing Data

Example 7 Chris thought he only had three test scores in MATH 1107: 79, 88 and 92. Turns out, he misplaced one test. If his mean test score is 86, what score did Chris earn on the misplaced test?

Let x represent the missing test score. Using the formula for a mean, we know that

$$86 = \frac{79 + 88 + 92 + x}{4};$$

$$86 = \frac{259 + x}{4};$$

$$344 = 259 + x;$$

$$85 = x.$$

Definition 5 The weighted mean of a set of n observations, $x_1, x_2, ..., x_n$, and weights, $w_1, w_2, ..., w_n$, is

$$\overline{x} = \frac{\sum w_i * x_i}{\sum w_i}.$$
(2)

Note that if every weight is the same then the weighted mean is equal to the mean.

Example 8 Determine Chris' final course average for MATH 1107 if each test is worth 20% and each quiz is worth 8%.

 $\frac{20*79+20*88+20*92+8*95+8*86+8*75+8*89+8*81}{20+20+20+8+8+8+8+8}=85.88$

5 Exercises

- 1. Navidi/Monk Section 3.1: 7-10, 15-18, 31, 32, 35-38, 44, 51, 52, 71, 72
- 2. Is it possible for John to lead the NFL in total rushing yards but for Nick to lead in average rushing yards per game played in the same season? If yes, construct a set of data that demonstrates it is possible. If no, explain why not. **HINT!** It is possible. It helps if you assume that Nick is injured midway through the season and doesn't play every game.
- 3. Determine Chris' final course average for MATH 1107 if each test is worth 25% and each quiz is worth 5%.
- 4. Determine Chris' final course average for MATH 1107 if each test is worth 30% and each quiz is worth 2%.
- 5. Construct a data set with n = 10 such that the average is larger than 90% of the data.
- 6. Can you construct a data set with n = 10 such that the median is larger than 90% of the data? If yes, do so. If not, explain why not.