Section 4.3: The Poisson Distribution

The Poisson distribution counts the number of occurrences of a particular event in a fixed unit of measurement.

Definition 1 An experiment has a Poisson Probability Distribution if and only if

1. the probability that a single event occurs in any fixed unit of measurement is the same for all intervals;
2. the mean number of events λ that occur in any interval is independent of the number that occur in any other interval.

Remark 2 The poisson random variable is denoted by $X^{\sim} \operatorname{Poisson}(\lambda)$.
Example 3 Customer dining at Rusan's on Barrett Pkwy on Mondays does not follow a Poisson distribution since the average number of customers is not fixed throughout all time periods of the day.

Popular times

Example 4 Customer dining at Rusan's on Barrett Pkwy on from 8 PM to 9 PM during the week does not follow a Poisson distribution since the average number of customers is not fixed throughout all days.
Popular times
\square Saturdays *

Example 5 Customer dining at Rusan's on Barrett Pkwy on from 1 PM to 2 PM on Monday does follow a Poisson distribution since the average number of customers is fixed throughout all Mondays.

Example 6 Suppose the average number of underfilled 12 ounce cans of cola in a 12 pack is $\lambda=.01$ and cans are independently filled. This process follows a Poisson distribution.

Theorem 7 If an experiment has a Poisson probability distribution where λ is the average number of occurrences in any fixed unit of measurement then

1. the probability of x occurrences in a fixed period of measurement is $p(x)=$ $\frac{e^{-\lambda} \lambda^{x}}{x!}$;
2. the mean or expected number of occurrences in a fixed period of measurement is $\mu=\lambda$;
3. and $V(X)=\lambda$ and thus, the standard deviation is $\sigma=\sqrt{\lambda}$.

Remark 8 The Poisson Distribution is a discrete random variable (since each event happens or it does not) but does not arise from counting principles as our previous examples have. It arises from the expansion of $e^{\lambda}=\sum_{x=0}^{\infty} \frac{\lambda^{x}}{x!}$. If we multiple both sides by $e^{-\lambda}$ we see that $1=e^{-\lambda} \sum_{x=0}^{\infty} \frac{\lambda^{x}}{x!}$ and by pushing the constant $e^{-\lambda}$ through the summation we get a probability distribution since $1=$ $\sum_{x=0}^{\infty} \frac{e^{-\lambda} \lambda^{x}}{x!}$ and since $\frac{e^{-\lambda} \lambda^{x}}{x!}>0$, it must be the case that $\frac{e^{-\lambda} \lambda^{x}}{x!}<1$.

Remark 9 On the TI-83/84 series of calculators, poissonpdf($\lambda, k)$ computes the probability of x occurrences in any fixed unit of measurement. The command poissontcdf (λ, x) computes the probability of 0 or 1 or 2 or...or x occurrences in any fixed unit of measurement

Example 10 Suppose the average number of customers from 1 PM to 2 PM at Rusan's on Monday is $\lambda=25$.

1. What is the standard deviation for the average number of customers from 1 PM to 2 PM at Rusan's on Monday? $\sigma=\sqrt{25}=5$.
2. What is the probability that exactly 20 customers dine from 1 PM to 2 PM at Rusan's next Monday?

$$
p(20)=\frac{e^{-25} 25^{20}}{20!}=5.1917 \times 10^{-2}
$$

3. What is the probability that no more than 4 customers dine from 1 PM to 2 PM at Rusan's next Monday?

$$
\begin{aligned}
& p(0)+p(1)+p(2)+p(3)+p(4)=\frac{e^{-25} 25^{0}}{0!}+\frac{e^{-25} 25^{1}}{1!}+\frac{e^{-25} 25^{2}}{2!}+\frac{e^{-25} 25^{3}}{3!}+ \\
& \frac{e^{-25} 25^{4}}{4!}=2.6691 \times 10^{-7}
\end{aligned}
$$

4. What is the probability that between 23 and 27 customers dine from 1 PM to 2 PM at Rusan's next Monday?
$p(23)+p(24)+p(25)+p(26)+p(27)=\frac{e^{-25} 25^{23}}{23!}+\frac{e^{-25} 25^{24}}{24!}+\frac{e^{-25} 25^{25}}{25!}+$ $\frac{e^{-25} 25^{26}}{26!}+\frac{e^{-25} 25^{27}}{27!}=0.38265$.

Problem 11 On the TV show, Criminal Minds, Dr. Spencer Reid has an average of 5 socially awkward moments per episode.

1. Find the mean and standard deviation for the number of socially awkward moments per episode.
2. Find the probability that Dr. Reid has no socially awkward moments in tonight's episode.

What if we don't know λ ? Can we estimate it? Of course we can.
Problem 12 Paul bakes pecan cookies in batches of 50. You eat the first five cookies out of the tent while counting pecans. These five cookies have 1,3,2,4 and 0 pecans. Estimate λ for the number of pecans per cookie. We use $\hat{\lambda}=\frac{X}{t}$ where X is the total number of events observed in period t. In this case that is $\frac{1+3+2+4+0}{5}=2$.

Problem 13 How much uncertainty do we expect in counting pecans in Paul's cookies? In general, $\sigma_{\hat{\lambda}}=\sqrt{\frac{\hat{\lambda}}{t}}$ and here specifically $\sigma_{\hat{\lambda}}=\sqrt{\frac{2}{5}}=0.63246$.

0.1 Exercises

Navidi 4.3: 1-9, 14, 17a-d

