Homework DM II

Section 9.1: 3-9, 13, 16
Section 9.2: 1-5, 7-10, 18, 20, 20-25, 26, 28, 29, 30, 31, 32-35, 37, 47, 48, 49, 53a, 53b, 54-56
Section 9.3: 1, 3, 5, 7, 9, 10, 11, 13, 15, 19, 21, 23, 25, 28, 29, 32 (except e), 34-42, 46, 50-55
Graphical Sequences Problems:

1. $4,4,4,4,4$ 2. $2,2,2,2,2,2$ 3. $3,3,3,2,2,2,2,1$
2. $4,3,1,1,1$
3. $6,4,4,3,3,2$
4. $4,4,4,4,3,2,1,1,1$
5. $4,3,3,2,2,1,1$
6. $5,3,3,2,2,2,0$
7. $5,4,4,3,1,1,1$
8. $4,4,3,3,2,2,1,1$
9. $4,4,4,3,3,3,3,2$
10. $6,5,5,4,3,3,2,2,1,1$
11. Let G be a graph with $n \geq 2$ vertices and $e=n-1$ edges. Prove the existence of at least two vertices u and v such that $\operatorname{deg}(u)+\operatorname{deg}(v) \leq 2$.
12. Determine, with proof, when the sequence of $n 1$'s is graphical.
13. Determine, with proof, when the sequence of $n 3$'s is graphical.
14. Determine, with proof, when the sequence of $n 5$'s is graphical.

Section 9.4: 1-6, 10-12, 18, 19, 21, 29-33, 37
Section 9.5: 1-10, 26, 27, 28, 30-40, 44, 45, 56-63
Section 9.7: 1-9, 12-14, 19-25
Section 9.8: 1-13, 15, 17-19, 21, 22
Find a graph G such that $\chi(G)=4$ but G contains no triangles.
Chromatic Polynomial handout: 1, 3, 7, 11-14

1. Can two non-isomorphic graphs have the same chromatic polynomial? Explain.
