A Graph Theoretic Summation of the Cubes of the First n Integers

Joe DeMaio
Kennesaw State University
Kennesaw, GA 30144
jDMAio@kennesaw.edu

Andy Lightcap
Kennesaw State University
Kennesaw, GA 30144
andy.lightcap@gmail.com

The complete graph K_{n+1} contains $n+1$ vertices and $\binom{n+1}{2}$ edges. Iteratively building the complete graph K_{n+1} by introducing vertices one at a time and counting the new edges incident to the new vertex provides a combinatorial proof that $\sum_{i=1}^{n} i = \binom{n+1}{2}$.

![Figure 1: $\sum_{i=1}^{n} i = \binom{n+1}{2}$](image)

Since $\sum_{i=1}^{n} i^3 = \left(\binom{n+1}{2}\right)^2$ it seems natural to look for a combinatorial proof that also uses graphs. Consider the complete bipartite graph $K_{\binom{n+1}{2}, \binom{n+1}{2}}$ that contains $2\binom{n+1}{2}$ vertices and $\binom{n+1}{2}^2$ edges. As before, we will count the new edges incident to newly introduced vertices in n stages. At stage i we introduce i new vertices to each side of the graph and count the edges incident to these new vertices. Since $\sum_{i=1}^{n} i = \binom{n+1}{2}$ this process enumerates all the edges in $K_{\binom{n+1}{2}, \binom{n+1}{2}}$. New vertices on one side are adjacent only to vertices on the other side. When just considering the edges between the new vertices, the subgraph $K_{i,i}$ immediately appears with i^2 edges. It turns out that these i^2 edges along with the additional edges constructed between a new vertex on one side and an old vertex on the other side will always total i^3 new edges. This shows that $\sum_{i=1}^{n} i^3 = \left(\binom{n+1}{2}\right)^2$.

In order to see that we always introduce i^3 new edges at stage i, we will partition the new edges into complete bipartite graphs. At stage i, there exist
\[i = \frac{i(i-1)}{2} \]

previously introduced vertices on each side of the graph and the
new vertices on each side are labeled \((\frac{i}{2}) + 1, (\frac{i}{2}) + 2, \ldots, (\frac{i}{2}) + i = (\frac{i+1}{2}) \). The
partition of these edges into complete bipartite graphs depends upon the parity
of \(i \). Figure 2 illustrates these stages for \(n = 5 \). To prevent a deluge of edges in
the graph, a complete bipartite graph such as \(K_{2,4} \) is represented as

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\
13 & 14 & 15 & 16 \\
\end{array}
\]

When \(i \) is odd, the new edges quickly form \(i \) disjoint copies of \(K_{i,i} \). For odd
\(i \) we partition the old vertices into \(\frac{i-1}{2} \) sets of \(i \) vertices for each side. Both
sets of \(i \) new vertices are adjacent to each of the \(\frac{i-1}{2} \) sets of \(i \) vertices on the
other side. This yields \(2(\frac{i-1}{2}) = i - 1 \) additional copies of \(K_{i,i} \). Along with
the initial copy of \(K_{i,i} \) on only the new vertices, we have \(i \) copies of \(K_{i,i} \) for a
total of \(i^3 \) new edges.

When \(i \) is even, we have to work a bit harder. For even \(i \), we partition the
old vertices on each side into \(\frac{i}{2} - 1 \) sets of \(i \) vertices and one set of \(\frac{i}{2} \) vertices.
This yields \(2 \left(\frac{i}{2} - 1 \right) \) copies of \(K_{i,i} \) and two copies of \(K_{\frac{i}{2},i} \) for \(2 \left(\frac{i}{2} - 1 \right) i^2 + 2 \frac{i}{2} i = i^3 - i^2 \) edges. As before, with the original \(K_{i,i} \) between the sets of new vertices,
the total once again is \(i^3 \) new edges.

References

of the first \(n \) integers, \(The College Mathematics Journal 38 \) (2007) 296.