Math 3322 Midterm
DeMaio Spring 2011
Name
Instructions. Show all your work. Credit cannot and will not be awarded for work not shown. Where appropriate, simplify all answers to a single decimal expansion.

1. (35 points) Compute the following.
i. $\sum_{i=1}^{74} i^{2}=137825$
ii. $\sum_{i=10}^{45} i^{3}=1069200$
iii. For $\frac{1}{2}<x<1,\left\lfloor\left\lceil\frac{x}{x^{2}}\right\rceil\right\rfloor=2$
iv. $\frac{(98+3)!}{98!}=999900$
v. $|P(A)|$ where $A=\{1,\{1\},\{2,3\},\{2,3,\{4\}\}, \mathbb{R}, \emptyset\}$
$|P(A)|=2^{6}=64$
vi. the first 10 terms of the sequence whose $n^{t h}$ term is the smallest integer k such that $k!>n$.
$2,3,3,3,3,4,4,4,4,4$
vii. For any set $A, A \oplus A=\emptyset$
2. (5 points) Find the domain and range of the function that assigns to each student in Math 3322 (a class that meets twice a week for 15 weeks) twice the number of classes missed.
The domain is the collection of all students in Math 3322. The range is the set of integers from 0 to 30.
3. (10 points) Let $g(n)=4 g(n-1)+g(n-2)$ for $n \geq 2$ where $g(0)=1$ and $g(1)=1$. Compute $g(2)$, $g(3)$, and $g(4)$.
$g(2)=4 * g(1)+g(0)=4 * 1+1=5$
$g(3)=4 * g(2)+g(1)=4 * 5+1=21$
$g(4)=4 * g(3)+g(2)=4 * 21+5=89$
4. (5 points) Write a recursive definition of the odd positive integers.

Let $O_{n}=O_{n-1}+2$ for $n \geq 2$ where $O_{1}=1$.
5. (10 points) Use induction to prove $\frac{3^{4 n+8}-11^{n+3}}{10} \in \mathbb{Z}$ for all $n \in \mathbb{Z}^{+}$.

Show that $S(1)$ is true. Note that $\frac{3^{4 * 1+8}-11^{1+3}}{10}=51680 \in \mathbb{Z}$. Now show that if $S(n)$ is true then $S(n+1)$ is also true. Assume $\frac{3^{4 n+8}-11^{n+3}}{10} \in \mathbb{Z}$ and show $\frac{3^{4(n+1)+8}-11^{n+1+3}}{10}=\frac{3^{4 n+12}-11^{n+4}}{10} \in$ \mathbb{Z}. We see that $\frac{3^{4 n+12}-11^{n+4}}{10}=\frac{3^{4} * 3^{4 n+8}-11 * 11^{n+3}}{10}=\frac{81 * 3^{4 n+8}-11 * 11^{n+3}}{10}=\frac{3^{4 n+8}-11^{n+3}}{10}+$ $\frac{80 * 3^{4 n+8}}{10}-\frac{10 * 11^{n+3}}{10}=i n t$ by inductive assumption $+8 * 3^{4 n+8}-11^{n+3}=i n t+i n t+i n t=i n t$.
6. (10 points) True or False: $A \oplus B=(A-B) \cap(B-A)$? If true, prove. If false, provide a counterexample.
False. Let $A=\{1,2\}$ and $B=\{2,3\} . A \oplus B=\{1,3\}$ while $(A-B) \cap(B-A)=\{1\} \cap\{3\}=\emptyset$. In fact, for every A and $B,(A-B) \cap(B-A)=\emptyset$ so all you have to do is select $A \neq B$.
7. (10 points) Prove that any amount of postage of at least 24 cents can be formed by using only 5 cent and 7 cent stamps.
We need five base cases.
$24=2 * 7+2 * 5$
$25=5 * 5$
$26=3 * 7+5$
$27=7+4 * 5$
$28=4 * 7$

Now assume that every amount of postage from $24,25,26,27,28, \ldots, n$ cents for $n \geq 28$ can be formed by using only 5 cent and 7 cent stamps. Show that $n+1$ cents worth of postage can be formed by using only 5 cent and 7 cent stamps. Since $n+1=5+n-4$ we can add a 5 cent stamp to our solution for $n-4$ cents worth of postage. How do we know a solution exists for $n-4$ cents worth of postage? Since $n \geq 28, n-4 \geq 24$ and we know a solution exists by our inductive assumption.
8. (15 points) Prove $\sum_{i=0}^{n} F_{3 i}=\frac{F_{3 n+2}-1}{2}$ for all positive integers n.

First show that $S(1)$ is true.
L.H.S. $\sum_{i=0}^{1} F_{3 i}=F_{0}+F_{3}=0+2=2$
R.H.S. $\frac{F_{3 * 1+2}-1}{2}=\frac{F_{5}-1}{2}=\frac{5-1}{2}=2$

Thus, $S(1)$ is true. Now assume $\sum_{i=0}^{n} F_{3 i}=\frac{F_{3 n+2}-1}{2}$ and show $\sum_{i=0}^{n+1} F_{3 i}=\frac{F_{3(n+1)+2}-1}{2}=\frac{F_{3 n+5}-1}{2}$.
$\sum_{i=0}^{n+1} F_{3 i}=\sum_{i=0}^{n} F_{3 i}+F_{3(n+1)}=\sum_{i=0}^{n} F_{3 i}+F_{3 n+3}=\frac{F_{3 n+2}-1}{2}+F_{3 n+3}=\frac{F_{3 n+2}-1+2 F_{3 n+3}}{2}=\frac{F_{3 n+2}+F_{3 n+3}+F_{3 n+3}-1}{2}=$ $\frac{F_{3 n+4}+F_{3 n+3}-1}{2}=\frac{F_{3 n+5}-1}{2}$.
9. (15 points) Someone claims that $r_{1}, r_{2}, r_{3}, \ldots$ is an ordered listing of all reals in $(0,1)$. Produce $r \in(0,1)$ such that $r \neq r_{i}$ for all $i \in \mathbb{Z}^{+}$. Once again, see class notes.

