Name_

Instructions. Show all your work. Credit cannot and will not be awarded for work not shown. Where appropriate, simplify all answers to a single decimal expansion.

1. (35 points) Compute the following.

i. $\sum_{i=1}^{74} i^2 = 137\,825$ ii. $\sum_{i=10}^{45} i^3 = 1069\,200$ iii. For $\frac{1}{2} < x < 1$, $\lfloor \lceil \frac{x}{x^2} \rceil \rfloor = 2$ iv. $\frac{(98+3)!}{98!} = 999\,900$ v. |P(A)| where $A = \{1, \{1\}, \{2, 3\}, \{2, 3, \{4\}\}, \mathbb{R}, \emptyset\}$ $|P(A)| = 2^6 = 64$ vi. the first 10 terms of the sequence whose n^{th} term is the smallest integer k such that k! > n. 2, 3, 3, 3, 3, 4, 4, 4, 4, 4 vii. For any set $A, A \oplus A = \emptyset$

- 2. (5 points) Find the domain and range of the function that assigns to each student in Math 3322 (a class that meets twice a week for 15 weeks) twice the number of classes missed.The domain is the collection of all students in Math 3322. The range is the set of integers from 0 to 30.
- 3. (10 points) Let g(n) = 4g(n-1) + g(n-2) for $n \ge 2$ where g(0) = 1 and g(1) = 1. Compute g(2), g(3), and g(4). g(2) = 4 * g(1) + g(0) = 4 * 1 + 1 = 5 g(3) = 4 * g(2) + g(1) = 4 * 5 + 1 = 21g(4) = 4 * g(3) + g(2) = 4 * 21 + 5 = 89
- 4. (5 points) Write a recursive definition of the odd positive integers. Let $O_n = O_{n-1} + 2$ for $n \ge 2$ where $O_1 = 1$.
- 5. (10 points) Use induction to prove $\frac{3^{4n+8} 11^{n+3}}{10} \in \mathbb{Z} \text{ for all } n \in \mathbb{Z}^+.$ Show that S(1) is true. Note that $\frac{3^{4n+8} - 11^{1+3}}{10} = 51\,680 \in \mathbb{Z}.$ Now show that if S(n) is true then S(n+1) is also true. Assume $\frac{3^{4n+8} - 11^{n+3}}{10} \in \mathbb{Z} \text{ and show } \frac{3^{4(n+1)+8} - 11^{n+1+3}}{10} = \frac{3^{4n+12} - 11^{n+4}}{10} \in \mathbb{Z}.$ Z. We see that $\frac{3^{4n+12} - 11^{n+4}}{10} = \frac{3^4 * 3^{4n+8} - 11 * 11^{n+3}}{10} = \frac{81 * 3^{4n+8} - 11 * 11^{n+3}}{10} = \frac{3^{4n+8} - 11^{n+3}}{10} + \frac{80 * 3^{4n+8}}{10} - \frac{10 * 11^{n+3}}{10} = int$ by inductive assumption $+8 * 3^{4n+8} - 11^{n+3} = int + int + int = int.$
- 6. (10 points) True or False: $A \oplus B = (A B) \cap (B A)$? If true, prove. If false, provide a counterexample. False. Let $A = \{1, 2\}$ and $B = \{2, 3\}$. $A \oplus B = \{1, 3\}$ while $(A - B) \cap (B - A) = \{1\} \cap \{3\} = \emptyset$. In fact, for every A and B, $(A - B) \cap (B - A) = \emptyset$ so all you have to do is select $A \neq B$.
- 7. (10 points) Prove that any amount of postage of at least 24 cents can be formed by using only 5 cent and 7 cent stamps.We need five base cases.

we need nive base 24 = 2 * 7 + 2 * 5 25 = 5 * 5 26 = 3 * 7 + 5 27 = 7 + 4 * 528 = 4 * 7 Now assume that every amount of postage from 24, 25, 26, 27, 28, ..., n cents for $n \ge 28$ can be formed by using only 5 cent and 7 cent stamps. Show that n + 1 cents worth of postage can be formed by using only 5 cent and 7 cent stamps. Since n+1=5+n-4 we can add a 5 cent stamp to our solution for n-4 cents worth of postage. How do we know a solution exists for n-4 cents worth of postage? Since $n \ge 28$, $n-4 \ge 24$ and we know a solution exists by our inductive assumption.

- 8. (15 points) Prove $\sum_{i=0}^{n} F_{3i} = \frac{F_{3n+2}-1}{2}$ for all positive integers n. First show that S(1) is true. L.H.S. $\sum_{i=0}^{1} F_{3i} = F_0 + F_3 = 0 + 2 = 2$ R.H.S. $\frac{F_{3i+2}-1}{2} = \frac{F_5-1}{2} = \frac{5-1}{2} = 2$ Thus, S(1) is true. Now assume $\sum_{i=0}^{n} F_{3i} = \frac{F_{3n+2}-1}{2}$ and show $\sum_{i=0}^{n+1} F_{3i} = \frac{F_{3n+5}-1}{2} = \frac{F_{3n+5}-1}{2}$. $\sum_{i=0}^{n+1} F_{3i} = \sum_{i=0}^{n} F_{3i} + F_{3(n+1)} = \sum_{i=0}^{n} F_{3i} + F_{3n+3} = \frac{F_{3n+2}-1}{2} + F_{3n+3} = \frac{F_{3n+2}-1+2F_{3n+3}}{2} = \frac{F_{3n+2}+F_{3n+3}+F_{3n+3}-1}{2} = \frac{F_{3n+4}+F_{3n+3}-1}{2} = \frac{F_{3n+4}+F_{3n+3}-1}{2} = \frac{F_{3n+4}+F_{3n+3}-1}{2}$.
- 9. (15 points) Someone claims that r_1, r_2, r_3, \dots is an ordered listing of all reals in (0, 1). Produce $r \in (0, 1)$ such that $r \neq r_i$ for all $i \in \mathbb{Z}^+$. Once again, see class notes.