Math 4322 Quiz I
DeMaio Spring 2010
Name
Instructions. Show all your work. Credit cannot and will not be awarded for work not shown. Where appropriate, simplify all answers to a single decimal expansion.

1. (5 points each) Complete the following.

The graph K_{35} has $\quad\binom{35}{2}=595 \quad$ edges.
The graph N_{72} has \qquad edges.

The graph P_{42} has \qquad edges.

The graph C_{112} has \qquad edges.

The graph W_{105} has \qquad edges.

The graph W_{105} has \qquad 106 vertices.

The graph $K_{15,17}$ has \qquad $15 * 17=255$ edges.

The graph $K_{15,17}$ has \qquad $15+17=32$ vertices.

The graph Q_{6} has \qquad vertices.

The graph C_{n} is bipartite when \qquad n is even \qquad -

The graph K_{n} is bipartite when \qquad .
2. (10 points) Draw the intersection graph for sets $A=\{1,4,5,8,9\}, B=\{2,4,5,6,9,10\}, C=\{1,2,3\}$, $D=\{1,8,9\}$ and $E=\{7\}$.

3. (10 points) Construct a graph $G=(V, E)$ with $n=6$ vertices and $e=9$ edges such that $\operatorname{deg}(v) \leq 3$ for all $v \in V$

4. (10 points) i. Draw Q_{3}. Be sure to label the vertices as bit strings.

(5 points) ii. State the handshaking lemma.
Let $G=(V, E)$ be a graph. $\sum_{v \in V} \operatorname{deg}(v)=2 e$
(10 points) iii. Use the handshaking lemma to construct a formula for the number of edges in Q_{n}. First, note that Q_{n} has 2^{n} vertices. Second, we must note that every vertex in Q_{n} is adjacent to exactly n vertices. Thus, $\sum_{v \in V} \operatorname{deg}(v)=n 2^{n}$ which is also $2 e$. Thus, $e=n 2^{n-1}$.
5. (10 points) Suppose a graph has 150 edges, 30 vertices of degree 4, and all others of degree 3. How many vertices does the graph have?
If $e=150$ then on the one hand, $\sum_{v \in V} \operatorname{deg}(v)=2 e=300$. Let x be the number of vertice of degree
3. On the other hand $\sum_{v \in V} \operatorname{deg}(v)=4 * 30+3 x$. So, $300=120+3 x$ and $x=60$. Thus, there are $30+60=90$ vertices in the graph.

