Math 4322 Quiz I DeMaio Spring 2010

	-	
IN	ame	

Instructions. Show all your work. Credit cannot and will not be awarded for work not shown. Where appropriate, simplify all answers to a single decimal expansion.

1. (5 points each) Complete the following.

The graph K_{35} has $\binom{35}{2} = 595$ edges. The graph N_{72} has 0 edges. The graph P_{42} has 41 edges. The graph P_{42} has 112 edges. The graph C_{112} has 210 edges. The graph W_{105} has 210 edges. The graph W_{105} has 106 vertices. The graph $K_{15,17}$ has 15 * 17 = 255 edges. The graph $K_{15,17}$ has 15 * 17 = 32 vertices. The graph $K_{15,17}$ has 26 = 64 vertices. The graph Q_6 has 2⁶ = 64 vertices. The graph C_n is bipartite when n is even . The graph K_n is bipartite when n = 1, 2.

2. (10 points) Draw the intersection graph for sets $A = \{1, 4, 5, 8, 9\}, B = \{2, 4, 5, 6, 9, 10\}, C = \{1, 2, 3\}, D = \{1, 8, 9\}$ and $E = \{7\}.$

3. (10 points) Construct a graph G = (V, E) with n = 6 vertices and e = 9 edges such that $\deg(v) \le 3$ for all $v \in V$

4. (10 points) i. Draw Q_3 . Be sure to label the vertices as bit strings.

(5 points) ii. State the handshaking lemma. Let G = (V, E) be a graph. $\sum_{v \in V} \deg(v) = 2e$

(10 points) iii. Use the handshaking lemma to construct a formula for the number of edges in Q_n . First, note that Q_n has 2^n vertices. Second, we must note that every vertex in Q_n is adjacent to exactly *n* vertices. Thus, $\sum_{v \in V} \deg(v) = n2^n$ which is also 2*e*. Thus, $e = n2^{n-1}$.

5. (10 points) Suppose a graph has 150 edges, 30 vertices of degree 4, and all others of degree 3. How many vertices does the graph have?

If e = 150 then on the one hand, $\sum_{v \in V} \deg(v) = 2e = 300$. Let x be the number of vertice of degree 3. On the other hand $\sum_{v \in V} \deg(v) = 4 * 30 + 3x$. So, 300 = 120 + 3x and x = 60. Thus, there are 30 + 60 = 90 vertices in the graph.