Math 3322 Quiz I
DeMaio Spring 2010
Name
Instructions. Show all your work. Credit cannot and will not be awarded for work not shown. Where appropriate, simplify all answers to a single decimal expansion.

1. (10 points) Let $S=\left\{x \mid x \in \mathbb{Z}^{+}, x\right.$ is a solution of $\left.\left(x^{2}-1\right)(2 x-7)(3 x-12)=0\right\}$. List the elements of S.
The solutions of $\left(x^{2}-1\right)(2 x-7)(3 x-12)=0$ are $-1,1,3.5$ and 4 . Of those, only 1 and 4 are elements of \mathbb{Z}^{+}. Thus, $S=\{1,4\}$
2. (10 points) Use set builder notation to define the set of all rational numbers.
$\mathbb{Q}=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}, b \neq 0\right\}$
3. (10 points) Let $A=\{1,2,3\}$ and $B=\{\alpha, \beta\}$. Construct $A \times B$.
$A \times B=\{(1, \alpha),(1, \beta),(2, \alpha),(2, \beta),(3, \alpha),(3, \beta)\}$
4. (15 points) Compute the cardinality of each of the following sets.
i. $\emptyset ;|\emptyset|=0$;
ii. $B=\left\{1, \beta, c,\{1\},\{\{\alpha, \beta, \gamma, \delta\}\}, \mathbb{Z}, \mathbb{Z}^{+}\right\}$;
$|B|=7$
iii. $P(C)$ for $C=\{1,2,3, \ldots, 15\}$.
$|P(C)|=2^{|C|}=2^{15}=32768$
5. (30 points) Let $U=\{1,2,3,4,5,6,7\}, A=\{1,5\}, B=\{2,3,7\}$ and $C=\{1,7\}$. List the members of each of the following sets.
i. $A \cap B=\emptyset$
ii. $A \cap C=\{1\}$
iii. $\overline{A \cup B}=$
$A \cup B=\{1,2,3,5,7\}$ so $\overline{A \cup B}=\{4,6\}$
iv. $\bar{A} \cup \bar{B}=\{1,2,3,4,5,6,7\}=U$
v. $(A \cup B) \cap C=\{1,7\}=C$
vi. $A \oplus C=\{5,7\}$
6. Let A and B be sets.
i. (5 points) State the definition of A is a subset of B.
A is a subset of B if and only if for every $x \in A, x \in B$.
ii. (5 points) What is the difference in meaning of $A \subseteq B$ versus $A \subset B$?

The notation $A \subseteq B$ allows $A=B$ while $A \subset B$ forces A to be a proper subset of B.
iii. (10 points) Let A and B be sets. Prove $(B-A) \cup(C-A) \subseteq(B \cup C)-A$.

Let $x \in(B-A) \cup(C-A)$. This forces $x \in(B-A)$ or $x \in(C-A)$. Note that in either case, $x \notin A$ since that would remove x from the set difference! Furthermore, $x \in(B-A)$ or $x \in(C-A)$ forces x to be a member of B or C. That fact demonstrates that $x \in B \cup C$. So, we have that $x \in B \cup C$ and $x \notin A$. So, $x \in(B \cup C)-A$.
7. (15 points) Prove $\sqrt{13}$ is irrational. Assume $\sqrt{13}$ is rational. This allows us to write $\sqrt{13}=\frac{a}{b}$ where $a, b \in \mathbb{Z}, b \neq 0$. Furthermore we can assume that a and b share no factors since we can always just reduce the fraction to its simplest terms. Now, if $\sqrt{13}=\frac{a}{b}$ then $13=\frac{a^{2}}{b^{2}}$ and $a^{2}=13 b^{2}$. So 13 divides a^{2}. Since 13 is prime we know that 13 must also divide a and we can write $a=13 k$ for some $k \in \mathbb{Z}$. Now we rewrite $a^{2}=13 b^{2}$ as $(13 k)^{2}=13 b^{2}$ and see that $b^{2}=\frac{(13 k)^{2}}{13}=13 k^{2}$. So 13 divides b^{2}. Once again, since 13 is prime we know that 13 must also divide b. This, however, is a contradiction since a and b share no common factors. So, the assumption that $\sqrt{13}$ is rational is false and we've shown that $\sqrt{13}$ is irrational.

