Name

Instructions. Show all your work. Credit cannot and will not be awarded for work not shown. Where appropriate, simplify all answers to a single decimal expansion.

1. (10 points) Let $S = \{x | x \in \mathbb{Z}^+, x \text{ is a solution of } (x^2 - 1)(2x - 7)(3x - 12) = 0\}$. List the elements of S.

The solutions of $(x^2 - 1)(2x - 7)(3x - 12) = 0$ are -1, 1, 3.5 and 4. Of those, only 1 and 4 are elements of \mathbb{Z}^+ . Thus, $S = \{1, 4\}$

- 2. (10 points) Use set builder notation to define the set of all rational numbers. $\mathbb{Q} = \{ \frac{a}{b} | a, b \in \mathbb{Z}, b \neq 0 \}$
- 3. (10 points) Let $A = \{1, 2, 3\}$ and $B = \{\alpha, \beta\}$. Construct $A \times B$. $A \times B = \{(1, \alpha), (1, \beta), (2, \alpha), (2, \beta), (3, \alpha), (3, \beta)\}$
- 4. (15 points) Compute the cardinality of each of the following sets.
 - i. \emptyset ; $|\emptyset| = 0$;

ii.
$$B = \{1, \beta, c, \{1\}, \{\{\alpha, \beta, \gamma, \delta\}\}, \mathbb{Z}, \mathbb{Z}^+\};$$

$$|B| = 7$$

iii.
$$P(C)$$
 for $C = \{1, 2, 3, ..., 15\}$. $|P(C)| = 2^{|C|} = 2^{15} = 32768$

$$|P(C)| = 2^{|C|} = 2^{15} = 32768$$

5. (30 points) Let $U = \{1, 2, 3, 4, 5, 6, 7\}$, $A = \{1, 5\}$, $B = \{2, 3, 7\}$ and $C = \{1, 7\}$. List the members of each of the following sets.

i.
$$A \cap B = \emptyset$$

ii.
$$A \cap C = \{1\}$$

iii.
$$\overline{A \cup B} =$$

$$A \cup B = \{1, 2, 3, 5, 7\}$$
 so $\overline{A \cup B} = \{4, 6\}$

iv.
$$\overline{A} \cup \overline{B} = \{1, 2, 3, 4, 5, 6, 7\} = U$$

v.
$$(A \cup B) \cap C = \{1, 7\} = C$$

vi.
$$A \oplus C = \{5, 7\}$$

- 6. Let A and B be sets.
 - i. (5 points) State the definition of A is a subset of B.

A is a subset of B if and only if for every $x \in A$, $x \in B$.

ii. (5 points) What is the difference in meaning of $A \subseteq B$ versus $A \subset B$?

The notation $A \subseteq B$ allows A = B while $A \subseteq B$ forces A to be a proper subset of B.

iii. (10 points) Let A and B be sets. Prove $(B-A) \cup (C-A) \subseteq (B \cup C) - A$.

Let $x \in (B-A) \cup (C-A)$. This forces $x \in (B-A)$ or $x \in (C-A)$. Note that in either case, $x \notin A$ since that would remove x from the set difference! Furthermore, $x \in (B-A)$ or $x \in (C-A)$ forces x to be a member of B or C. That fact demonstrates that $x \in B \cup C$. So, we have that $x \in B \cup C$ and $x \notin A$. So, $x \in (B \cup C) - A$.

7. (15 points) Prove $\sqrt{13}$ is irrational. Assume $\sqrt{13}$ is rational. This allows us to write $\sqrt{13} = \frac{a}{h}$ where $a, b \in \mathbb{Z}, b \neq 0$. Furthermore we can assume that a and b share no factors since we can always just reduce the fraction to its simplest terms. Now, if $\sqrt{13} = \frac{a}{b}$ then $13 = \frac{a^2}{b^2}$ and $a^2 = 13b^2$. So 13 divides a^2 . Since 13 is prime we know that 13 must also divide a and we can write a = 13k for some $k \in \mathbb{Z}$. Now we rewrite $a^2 = 13b^2$ as $(13k)^2 = 13b^2$ and see that $b^2 = \frac{(13k)^2}{13} = 13k^2$. So 13 divides b^2 . Once again, since 13 is prime we know that 13 must also divide b. This, however, is a contradiction since a and b share no common factors. So, the assumption that $\sqrt{13}$ is rational is false and we've shown that $\sqrt{13}$ is irrational.