Name
Instructions. Show all your work. Credit cannot and will not be awarded for work not shown. Where appropriate, simplify all answers to a single decimal expansion.

1. (10 points) Let $S=\left\{x \mid x \in \mathbb{R}^{-}, x\right.$ is a solution of $\left.\left(x^{2}-4\right)(2 x+7)=0\right\}$. List the elements of S.

The solutions of $\left(x^{2}-4\right)(2 x+7)=0$ are $2,-2$ and $-\frac{7}{2}$. The set S consists of those solutions from the set of negative real numbers and $S=\left\{-2,-\frac{7}{2}\right\}$.
2. (10 points) Use set builder notation to define the set of all rational numbers.
$\mathbb{Q}=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}, b \neq 0\right\}$
3. (10 points) Let $A=\{1,2,3\}$. Construct $P(A)$.
$P(A)=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$
4. (15 points) Compute the cardinality of each of the following sets.
i. $|\emptyset|=0$;
ii. $B=\left\{1, \beta, c,\{1\},\{\{\alpha, \beta, \gamma, \delta\}\}, \mathbb{Z}, \mathbb{Z}^{+}\right\} ;$
$|B|=7$
iii. $P(C)$ for $C=\{1,2,3, \ldots, 15\}$.
$|P(C)|=2^{|C|}=2^{15}=32768$
5. (30 points) Let $U=\{1,2,3, \ldots, 10\}, A=\{1,5,8,9\}, B=\{2,3,7\}$ and $C=\{1,7,10\}$. List the members of each of the following sets.
i. $A \cap B=\emptyset$
ii. $A \cap C=\{1\}$
iii. $\overline{A \cup B}=$
$A \cup B=\{1,2,3,5,7,8,9\}$ so $\overline{A \cup B}=\{4,6,10\}$
iv. $\bar{A} \cup \bar{B}=\{1,2,3, \ldots, 10\}=U$
v. $(A \cup B) \cap C=\{1,7\}$
vi. (As defined in the homework) $A \oplus C=\{5,7,8,9,10\}$
6. (20 points) Let A and B be sets.
i. State the definition of A is a subset of B.
A is a subset of B if for every $x \in A, x \in B$.
ii. What is the difference in meaning of $A \subseteq B$ versus $A \subset B$?

The notation $A \subseteq B$ allows $A=B$ while $A \subset B$ forces A to be a proper subset of B.
iii. Let $A \subseteq B$.
$A \cup B=B$
$A \cap B=A$
$A-B=\emptyset$
7. (15 points) Prove $\sqrt{13}$ is irrational.

Prove $\sqrt{13}$ is irrational.
Assume $\sqrt{13}$ is rational. This allows us to write $\sqrt{13}=\frac{a}{b}$ where $a, b \in \mathbb{Z}, b \neq 0$. Furthermore we can assume that a and b share no factors since we can always just reduce the fraction to its simplest terms. Now, if $\sqrt{13}=\frac{a}{b}$ then $13=\frac{a^{2}}{b^{2}}$ and $a^{2}=13 b^{2}$. So 13 divides a^{2}. Since 13 is prime we know that 13 must also divide a and we can write $a=13 k$ for some $k \in \mathbb{Z}$. Now we rewrite $a^{2}=13 b^{2}$ as $(13 k)^{2}=13 b^{2}$ and see that $b^{2}=\frac{(13 k)^{2}}{13}=13 k^{2}$. So 13 divides b^{2}. Once again, since 13 is prime we know that 13 must also divide b. This, however, is a contradiction since a and b share no common factors. So, the assumption that $\sqrt{13}$ is rational is false and we've shown that $\sqrt{13}$ is irrational.

