Instructions. Show all your work. Credit cannot and will not be awarded for work not shown. Where appropriate, simplify all answers to a single decimal expansion.

- 1. (10 points) Let $S = \{x | x \in \mathbb{R}^-, x \text{ is a solution of } (x^2 4) (2x + 7) = 0\}$. List the elements of S. The solutions of $(x^2 - 4) (2x + 7) = 0$ are 2, -2 and $-\frac{7}{2}$. The set S consists of those solutions from the set of negative real numbers and $S = \{-2, -\frac{7}{2}\}$.
- 2. (10 points) Use set builder notation to define the set of all rational numbers. $\mathbb{Q} = \{\frac{a}{b} | a, b \in \mathbb{Z}, b \neq 0\}$
- 3. (10 points) Let $A = \{1, 2, 3\}$. Construct P(A). $P(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$
- 4. (15 points) Compute the cardinality of each of the following sets. i. $|\emptyset| = 0$; ii. $B = \{1, \beta, c, \{1\}, \{\{\alpha, \beta, \gamma, \delta\}\}, \mathbb{Z}, \mathbb{Z}^+\};$ |B| = 7iii. P(C) for $C = \{1, 2, 3, ..., 15\}.$ $|P(C)| = 2^{|C|} = 2^{15} = 32\,768$
- 5. (30 points) Let $U = \{1, 2, 3, ..., 10\}, A = \{1, 5, 8, 9\}, B = \{2, 3, 7\}$ and $C = \{1, 7, 10\}$. List the members of each of the following sets. i. $A \cap B = \emptyset$ ii. $A \cap C = \{1\}$ iii. $\overline{A \cup B} =$ $A \cup B = \{1, 2, 3, 5, 7, 8, 9\}$ so $\overline{A \cup B} = \{4, 6, 10\}$ iv. $\overline{A \cup B} = \{1, 2, 3, ..., 10\} = U$
 - v. $(A \cup B) \cap C = \{1, 7\}$
 - vi. (As defined in the homework) $A \oplus C = \{5, 7, 8, 9, 10\}$
- 6. (20 points) Let A and B be sets.
 i. State the definition of A is a subset of B. A is a subset of B if for every x ∈ A, x ∈ B.
 ii. What is the difference in meaning of A ⊆ B versus A ⊂ B? The notation A ⊆ B allows A = B while A ⊂ B forces A to be a proper subset of B.
 iii. Let A ⊆ B. A ∪ B = B A ∩ B = A A - B = Ø
- 7. (15 points) Prove $\sqrt{13}$ is irrational. Prove $\sqrt{13}$ is irrational.

Assume $\sqrt{13}$ is rational. This allows us to write $\sqrt{13} = \frac{a}{b}$ where $a, b \in \mathbb{Z}, b \neq 0$. Furthermore we can assume that a and b share no factors since we can always just reduce the fraction to its simplest terms. Now, if $\sqrt{13} = \frac{a}{b}$ then $13 = \frac{a^2}{b^2}$ and $a^2 = 13b^2$. So 13 divides a^2 . Since 13 is prime we know that 13 must also divide a and we can write a = 13k for some $k \in \mathbb{Z}$. Now we rewrite $a^2 = 13b^2$ as $(13k)^2 = 13b^2$ and see that $b^2 = \frac{(13k)^2}{13} = 13k^2$. So 13 divides b^2 . Once again, since 13 is prime we know that 13 must also divide b. This, however, is a contradiction since a and b share no common factors. So, the assumption that $\sqrt{13}$ is rational is false and we've shown that $\sqrt{13}$ is irrational.