Name

Instructions. Show all your work. Credit cannot and will not be awarded for work not shown. Where appropriate, simplify all answers to a single decimal expansion.

- 1. (10 points) Let $S = \{x | x \in \mathbb{Z}^-, x \text{ is a solution of } (x^2 4) (2x + 7) = 0\}$. List the elements of S. $S = \{-2\}$
- 2. (10 points) Use set builder notation to define the set of all rational numbers. $\mathbb{Q} = \left\{ \frac{a}{b} | a, b \in \mathbb{Z}, b \neq 0 \right\}$
- 3. (10 points) Let $A = \{\emptyset, 1\}$. Construct P(A). $P(A) = \{\emptyset, \{\emptyset\}, \{1\}, \{\emptyset, 1\}\}$
- 4. (15 points) Compute the cardinality of each of the following sets. i. \emptyset ; $|\emptyset| = 0$ ii. $B = \{1, 2, 3, \{\alpha, \omega, 1\}, \beta, c, \{1\}, \{\{\alpha, \beta, \gamma, \delta\}\}, \mathbb{Z}, \mathbb{Z}^+\};$ |B| = 10iii. P(C) for $C = \{1, 2, 3, ..., 8\}.$ $|P(C)| = 2^{|C|} = 2^8 = 256$
- 5. (35 points) Let S = {1,3, {2,3}, {Ø,2}}. Answer the following without explanation.
 i. Is 1 ⊆ S? No.
 ii. Is {2,3} ⊆ S? No.

iii. Is $\{2, 3\} \subseteq S$? No. iv. Is $\{0\} \in S$? No. v. Is $\{0\} \in S$? No. vi. Is $\{3, \{2, 3\}\} \subseteq S$? Yes. vii. Is $\{3, \{2, 3\}\} \subseteq S$? Yes.

6. Let A and B be sets.

i. (5 points) State the definition of A is a subset of B.
The set A is a subset of the set B if for every x ∈ A, x ∈ B.
ii. (5 points) What is the difference in meaning of A ⊆ B versus A ⊂ B?

If $A \subseteq B$ then A might equal B. In $A \subset B$, $A \neq B$. iii. (5 points) Give an example of two sets A and B such that $A \in B$ and $A \subseteq B$. Let $A = \{1\}$ and $B = \{1, \{1\}\}$.

7. (15 points) Prove $\sqrt{7}$ is irrational.

Proof by contradiction.

Assume $\sqrt{7}$ is rational. This allows us to write $\sqrt{7} = \frac{a}{b}$ where $a, b \in \mathbb{Z}, b \neq 0$. Furthermore we can assume that a and b share no factors since we can always just reduce the fraction to its simplest terms. Now, if $\sqrt{7} = \frac{a}{b}$ then $7 = \frac{a^2}{b^2}$ and $a^2 = 7b^2$. So 7 divides a^2 . Since 7 is prime we know that 7 must also divide a and we can write a = 7k for some $k \in \mathbb{Z}$. Now we rewrite $a^2 = 7b^2$ as $(7k)^2 = 7b^2$ and see that $b^2 = \frac{(7k)^2}{7} = 7k^2$. So 7 divides b^2 . Once again, since 7 is prime we know that 7 must also divide b. This, however, is a contradiction since a and b share no common factors. So, the assumption that $\sqrt{7}$ is rational is false and we've shown that $\sqrt{7}$ is irrational.