Math 3322 Quiz I
DeMaio Fall 2010
Name
Instructions. Show all your work. Credit cannot and will not be awarded for work not shown. Where appropriate, simplify all answers to a single decimal expansion.

1. (10 points) Let $S=\left\{x \mid x \in \mathbb{Z}^{-}, x\right.$ is a solution of $\left.\left(x^{2}-4\right)(2 x+7)=0\right\}$. List the elements of S. $S=\{-2\}$
2. (10 points) Use set builder notation to define the set of all rational numbers.
$\mathbb{Q}=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}, b \neq 0\right\}$
3. (10 points) Let $A=\{\emptyset, 1\}$. Construct $P(A)$.
$P(A)=\{\emptyset,\{\emptyset\},\{1\},\{\emptyset, 1\}\}$
4. (15 points) Compute the cardinality of each of the following sets.
i. \emptyset;
$|\emptyset|=0$
ii. $B=\left\{1,2,3,\{\alpha, \omega, 1\}, \beta, c,\{1\},\{\{\alpha, \beta, \gamma, \delta\}\}, \mathbb{Z}, \mathbb{Z}^{+}\right\} ;$
$|B|=10$
iii. $P(C)$ for $C=\{1,2,3, \ldots, 8\}$.
$|P(C)|=2^{|C|}=2^{8}=256$
5. (35 points) Let $S=\{1,3,\{2,3\},\{\emptyset, 2\}\}$. Answer the following without explanation.
i. Is $1 \subseteq S$? No.
ii. Is $\{2,3\} \subseteq S$? No.
iii. Is $\{1,3\} \in S$? No.
iv. Is $\emptyset \in S$? No.
v. Is $\{\emptyset\} \in S$? No.
vi. Is $\{3,\{2,3\}\} \subseteq S$? Yes.
vii. Is $(3,\{2,3\}) \in S \times S$? Yes.
6. Let A and B be sets.
i. (5 points) State the definition of A is a subset of B.

The set A is a subset of the set B if for every $x \in A, x \in B$.
ii. (5 points) What is the difference in meaning of $A \subseteq B$ versus $A \subset B$?

If $A \subseteq B$ then A might equal B. In $A \subset B, A \neq B$.
iii. (5 points) Give an example of two sets A and B such that $A \in B$ and $A \subseteq B$.

Let $A=\{1\}$ and $B=\{1,\{1\}\}$.
7. (15 points) Prove $\sqrt{7}$ is irrational. .

Proof by contradiction.
Assume $\sqrt{7}$ is rational. This allows us to write $\sqrt{7}=\frac{a}{b}$ where $a, b \in \mathbb{Z}, b \neq 0$. Furthermore we can assume that a and b share no factors since we can always just reduce the fraction to its simplest terms. Now, if $\sqrt{7}=\frac{a}{b}$ then $7=\frac{a^{2}}{b^{2}}$ and $a^{2}=7 b^{2}$. So 7 divides a^{2}. Since 7 is prime we know that 7 must also divide a and we can write $a=7 k$ for some $k \in \mathbb{Z}$. Now we rewrite $a^{2}=7 b^{2}$ as $(7 k)^{2}=7 b^{2}$ and see that $b^{2}=\frac{(7 k)^{2}}{7}=7 k^{2}$. So 7 divides b^{2}. Once again, since 7 is prime we know that 7 must also divide b. This, however, is a contradiction since a and b share no common factors. So, the assumption that $\sqrt{7}$ is rational is false and we've shown that $\sqrt{7}$ is irrational.

