Name

Instructions. Show all your work. Credit cannot and will not be awarded for work not shown. Where appropriate, simplify all answers to a single decimal expansion.

- 1. (10 points) List the members of the sets i. $S = \{x | x \le 100 \text{ and } \sqrt{x} \in \mathbb{Z}\}.$ $S = \{0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100\}$ ii. $S = \{x | x \in \mathbb{Z} \text{ such that } x^2 = 2\}.$ $S = \emptyset$
- 2. (10 points) Use set builder notation to give a description of $S = \{..., -15, -10, -5, 0, 5, 10, 15, ...\}$. $S = \{5x | x \in \mathbb{Z}\}$
- 3. (10 points) Find P(A) for $A = \{1, \mathbb{R}, \emptyset\}$. $P(A) = \{\emptyset, \{1\}, \{\mathbb{R}\}, \{\emptyset\}, \{1, \mathbb{R}\}, \{1, \emptyset\}, \{\mathbb{R}, \emptyset\}, \{1, \mathbb{R}, \emptyset\}\}$
- 4. (15 points) What is the cardinality of each of the following sets? i. $B = \emptyset$ |B| = 0ii. $C = \{a, b, \{a\}, \{a, b\}, \emptyset, \{\emptyset\}, \mathbb{R}, \{\emptyset, \mathbb{R}\}, \mathbb{Z}\}$ |C| = 9iii. P(A) for $A = \{1, 2, 3, a, b, c, \Box, \Delta, \Diamond, \alpha, \beta, \gamma\}$ For finite sets A, $|P(A)| = 2^{|A|} = 2^{12} = 4096$
- 5. (10 points) Let A and B be sets. Complete the definitions.
 i. The set A-B is the collection of all elements x such that x ∈ A but x ∉ B.
 ii. Set A is a **proper subset** of set B if for every x ∈ A, x ∈ B but A ≠ B.
- 6. (25 points) Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{1, 4, 5, 8, 9\}$ and $B = \{2, 4, 5, 6, 9, 10\}$. List the members of the following sets. i. $A \cup B = \{1, 2, 4, 5, 6, 8, 9, 10\}$ ii. $\overline{A \cup B} = \{4, 5, 9\}$ iii. $\overline{\overline{A \cup B}}$ $\overline{A \cup B} = \{2, 3, 4, 5, 6, 7, 9, 10\}$ so $\overline{\overline{A \cup B}} = \{1, 8\}$ iv. $A - B = \{1, 2, 6, 8, 10\}$
- 7. i. (5 points) Let S be some mathematical statement. Describe the strategy to show that S is a true statement using the proof technique of contradiction.
 The technique of contradiction will assume that the statement S is false. One then proceeds with logical statements and delections that result in the shound on a contradiction of lower factor. Thus,

logical statements and deductions that result in the absurd or a contradiction of known facts. Thus, it cannot be the case S is false. If S cannot be false then S must be true. ii. (15 points) Prove $\sqrt{23}$ is irrational.

Assume $\sqrt{23}$ is rational. This allows us to write $\sqrt{23} = \frac{a}{b}$ where $a, b \in \mathbb{Z}, b \neq 0$. Furthermore we can assume that a and b share no factors since we can always just reduce the fraction to its simplest terms. Now, if $\sqrt{23} = \frac{a}{b}$ then $23 = \frac{a^2}{b^2}$ and $a^2 = 23b^2$. So 23 divides a^2 . Since 23 is prime we know that 23 must also divide a and we can write a = 23k for some $k \in \mathbb{Z}$. Now we rewrite $a^2 = 23b^2$ as $(23k)^2 = 23b^2$ and see that $b^2 = \frac{(23k)^2}{23} = 23k^2$. So 23 divides b^2 . Once again, since 23 is prime we know that 23 must also divide b. This, however, is a contradiction since a and b share no common factors. So, the assumption that $\sqrt{23}$ is rational is false and we've show that $\sqrt{23}$ is irrational.

8. Let A and B be sets.

i. (5 points) Describe the strategy of the proof technique one uses to show that A = B.
First show A ⊆ B. Second show B ⊆ A. Put the two together and A = B.
ii. (10 points) Prove A ⊕ S = A where S is the universal set.

First show $A \oplus S \subseteq \overline{A}$. Let $x \in A \oplus S$. This means that either $x \in A$ and $x \notin S$ or $x \notin A$ and $x \in S$. Since S is the universal set, x must be in S. Thus, $x \in A$ and $x \notin S$ cannot be true and it must be that $x \notin A$ and $x \in S$. Thus, $x \notin A$ and $x \in \overline{A}$.

Second show $\overline{A} \subseteq A \oplus S$. Let $x \in \overline{A}$. By definition of the universal set, $x \in S$. Thus $x \notin A$ and $x \in S$ which shows that $x \in A \oplus S$.