Math 3322 Quiz I Key
DeMaio Summer 2009
Name
Instructions. Show all your work. Credit cannot and will not be awarded for work not shown. Where appropriate, simplify all answers to a single decimal expansion.

1. (10 points) List the members of the sets
i. $S=\{x \mid x \leq 100$ and $\sqrt{x} \in \mathbb{Z}\}$.
$S=\{0,1,4,9,16,25,36,49,64,81,100\}$
ii. $S=\left\{x \mid x \in \mathbb{Z}\right.$ such that $\left.x^{2}=2\right\}$.
$S=\emptyset$
2. (10 points) Use set builder notation to give a description of $S=\{\ldots,-15,-10,-5,0,5,10,15, \ldots\}$.
$S=\{5 x \mid x \in \mathbb{Z}\}$
3. (10 points) Find $P(A)$ for $A=\{1, \mathbb{R}, \emptyset\}$.
$P(A)=\{\emptyset,\{1\},\{\mathbb{R}\},\{\emptyset\},\{1, \mathbb{R}\},\{1, \emptyset\},\{\mathbb{R}, \emptyset\},\{1, \mathbb{R}, \emptyset\}\}$
4. (15 points) What is the cardinality of each of the following sets?
i. $B=\emptyset$
$|B|=0$
ii. $C=\{a, b,\{a\},\{a, b\}, \emptyset,\{\emptyset\}, \mathbb{R},\{\emptyset, \mathbb{R}\}, \mathbb{Z}\}$
$|C|=9$
iii. $P(A)$ for $A=\{1,2,3, a, b, c, \square, \triangle, \diamond, \alpha, \beta, \gamma\}$

For finite sets $A,|P(A)|=2^{|A|}=2^{12}=4096$
5. (10 points) Let A and B be sets. Complete the definitions.
i. The set $A-B$ is the collection of all elements x such that $x \in A$ but $x \notin B$.
ii. Set A is a proper subset of set B if for every $x \in A, x \in B$ but $A \neq B$.
6. (25 points) Let $U=\{1,2,3,4,5,6,7,8,9,10\}, A=\{1,4,5,8,9\}$ and $B=\{2,4,5,6,9,10\}$. List the members of the following sets.
i. $A \cup B=\{1,2,4,5,6,8,9,10\}$
ii. $A \cap B=\{4,5,9\}$
iii. $\bar{A} \cup B$
$\bar{A} \cup B=\{2,3,4,5,6,7,9,10\}$ so $\overline{\bar{A} \cup B}=\{1,8\}$
iv. $A-B=\{1,8\}$
v. $A \oplus B=\{1,2,6,8,10\}$
7. i. (5 points) Let S be some mathematical statement. Describe the strategy to show that S is a true statement using the proof technique of contradiction.
The technique of contradiction will assume that the statement S is false. One then proceeds with logical statements and deductions that result in the absurd or a contradiction of known facts. Thus, it cannot be the case S is false. If S cannot be false then S must be true.
ii. (15 points) Prove $\sqrt{23}$ is irrational.

Assume $\sqrt{23}$ is rational. This allows us to write $\sqrt{23}=\frac{a}{b}$ where $a, b \in \mathbb{Z}, b \neq 0$. Furthermore we can assume that a and b share no factors since we can always just reduce the fraction to its simplest terms. Now, if $\sqrt{23}=\frac{a}{b}$ then $23=\frac{a^{2}}{b^{2}}$ and $a^{2}=23 b^{2}$. So 23 divides a^{2}. Since 23 is prime we know that 23 must also divide a and we can write $a=23 k$ for some $k \in \mathbb{Z}$. Now we rewrite $a^{2}=23 b^{2}$ as $(23 k)^{2}=23 b^{2}$ and see that $b^{2}=\frac{(23 k)^{2}}{23}=23 k^{2}$. So 23 divides b^{2}. Once again, since 23 is prime we know that 23 must also divide b. This, however, is a contradiction since a and b share no common factors. So, the assumption that $\sqrt{23}$ is rational is false and we've show that $\sqrt{23}$ is irrational.
8. Let A and B be sets.
i. (5 points) Describe the strategy of the proof technique one uses to show that $A=B$.

First show $A \subseteq B$. Second show $B \subseteq A$. Put the two together and $A=B$.
ii. (10 points) Prove $A \oplus S=\bar{A}$ where S is the universal set.

First show $A \oplus S \subseteq \bar{A}$. Let $x \in A \oplus S$. This means that either $x \in A$ and $x \notin S$ or $x \notin A$ and $x \in S$. Since S is the universal set, x must be in S. Thus, $x \in A$ and $x \notin S$ cannot be true and it must be that $x \notin A$ and $x \in S$. Thus, $x \notin A$ and $x \in \bar{A}$.
Second show $\bar{A} \subseteq A \oplus S$. Let $x \in \bar{A}$. By definition of the universal set, $x \in S$. Thus $x \notin A$ and $x \in S$ which shows that $x \in A \oplus S$.

