Name

Instructions. Show all your work. Credit cannot and will not be awarded for work not shown. Where appropriate, simplify all answers to a single decimal expansion.

- 1. (10 points) List the members of the set $S = \{x | x \leq 100 \text{ and } \sqrt[3]{x} \in \mathbb{Z}^+\}$. $S = \{1, 8, 27, 64\}$
- 2. (10 points) Use set builder notation to give a description of $S = \{..., -15, -10, -5, 0, 5, 10, 15, ...\}$. $S = \{5x | x \in \mathbb{Z}\}$
- 3. (10 points) Find P(A) for $A = \{1, a, \Box\}$. $P(A) = \{\emptyset, \{1\}, \{a\}, \{\Box\}, \{1, a\}, \{1, \Box\}, \{a, \Box\}, \{1, a, \Box\}\}$
- 4. (15 points) What is the cardinality of each of the following sets?
 i. |∅| = 0
 ii. |{a, b, {a}, {a, b}, ∅, ℝ, ℤ}| = 7
 iii. P(A) for A = {1, 2, 3, a, b, c, □, △, ◊}
 |P(A)| = 2⁹ = 512
- 5. (10 points) Complete the definitions.
 i. Two sets A and B are disjoint if A ∩ B = Ø.
 ii. Set A is a subset of set B if for every x ∈ A, x ∈ B.
- 6. (25 points) Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{1, 4, 5, 8, 9\}$ and $B = \{2, 4, 5, 6, 9, 10\}$. List the members of the following sets. i. $A \cup B = \{1, 2, 4, 5, 6, 8, 9, 10\}$ ii. $A \cap B = \{4, 5, 9\}$ iii. $\overline{A} \cup B = \{2, 3, 4, 5, 6, 7, 9, 10\}$ iv. $A - B = \{1, 8\}$ v. $A \oplus B = \{1, 2, 6, 8, 10\}$
- 7. (20 points)In a Venn diagram shade

8. Let A and B be sets.

i. (5 points) Describe the strategy of the proof technique one uses to show that A = B. There are two parts to this proof. First show $A \subseteq B$. Second show $B \subseteq A$.

ii. (10 points) Prove $A - B = A \cap \overline{B}$.

First show $A - B \subseteq A \cap \overline{B}$. Let $x \in A - B$. This means that $x \in A$ and $x \notin B$. Thus $x \in A$ and $x \in \overline{B}$ which shows $x \in A \cap \overline{B}$.

Second show $A \cap \overline{B} \subseteq A - B$. Let $x \in A \cap \overline{B}$. This shows $x \in A$ and $x \in \overline{B}$. Thus, $x \in A$ and $x \notin B$ which shows $x \in A - B$.

Put both parts together and $A - B = A \cap \overline{B}$.