Math 4322 Quiz I
DeMaio Spring 2009
Name
Instructions. Show all your work. Credit cannot and will not be awarded for work not shown. Where appropriate, simplify all answers to a single decimal expansion.

1. (15 points) Provide an algebraic proof that $\binom{n+1}{2}^{2}-\binom{n}{2}^{2}=n^{3}$.

$$
\binom{n+1}{2}^{2}-\binom{n}{2}^{2}=\left(\frac{n(n+1)}{2}\right)^{2}-\left(\frac{n(n-1)}{2}\right)^{2}=\frac{n^{2}\left((n+1)^{2}-(n-1)^{2}\right)}{4}=\frac{n^{2}\left(\left(n^{2}+2 n+1\right)-\left(n^{2}-2 n+1\right)\right)}{4}=\frac{n^{2}(4 n)}{4}=n^{3}
$$

2. (30 points) Consider the following graph $G=(V, E)$.

i. Vertex 1 is not adjacent to vertex 7 .
ii. The $5-7$ edge is adjacent to the $7-9$ edge.
iii. $N(7)=\{5,6,8,9\}$
iv. $\operatorname{deg}(9)=3$
v. The set of all pendants of G is $\{6,8\}$
vi. The set of all isolated vertices of G is \emptyset
3. (10 points) Draw the intersection graph for sets $A=\{1,4,5,8,9\}, B=\{2,4,5,6,9,10\}, C=\{1,2,3\}$, $D=\{1,8,9\}$ and $E=\{7\}$.

4. (10 points) Construct a graph $G=(V, E)$ with $n=6$ vertices and $e=9$ edges such that $\operatorname{deg}(v) \leq 3$ for all $v \in V$

5. (10 points) Suppose a graph has 150 edges, 30 vertices of degree 4, and all others of degree 3. How many vertices does the graph have?
By the Handshaking Lemma we know $\sum_{v \in V} \operatorname{deg}(v)=2 e$. We quickly see that $2 e=2 * 150=300$. Let x be the number of vertices of degree 3. Thus, $\sum_{v \in V} \operatorname{deg}(v)=4 * 30+3 x$. Setting $300=120+3 x$ and solving for x yields $x=60$. The graph has $30+60=90$ vertices.
6. (10 points) $\frac{504!}{502!}=\frac{504 * 503 * 502!}{502!}=504 * 503=253512$
7. (15 points) Use induction to prove $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$.
I. Show that $S(1)$ is true. L.H.S. $\sum_{i=1}^{1} i=1$. R.H.S. $\frac{1(1+1)}{2}=\frac{2}{2}=1$. Thus, $S(1)$ is true.
II. Assume $S(n)$ is true: $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$ and show $S(n+1)$ is true: $\sum_{i=1}^{n+1} i=\frac{(n+1)(n+2)}{2}$..
$\sum_{i=1}^{n+1} i=\sum_{i=1}^{n} i+(n+1)$ which by the inductive hypothesis is $\frac{n(n+1)}{2}+(n+1)=\frac{n(n+1)}{2}+\frac{2(n+1)}{2}=$ $\frac{(n+1)(n+2)}{2}$.
8. (15 points) Six men and seven women stand in a line at the bookstore.
(a) How many arrangements of these people are possible? $13!=6227020800$
(b) How many arrangements of these people are possible if the men stand in succession? $6!* 8!=29030400$
(c) How many arrangements of these people are possible if the men and women must alternate positions within the line? $7!* 6!=3628800$
