Instructions. Show all your work. Credit cannot and will not be awarded for work not shown. Where appropriate, simplify all answers to a single decimal expansion.

1. (5 points each) Complete the following.

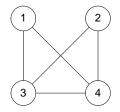
The graph K_{35} has ______($\frac{35}{2}$) = 595 edges. The graph N_{72} has _______ edges. The graph P_{42} has _______ edges. The graph P_{42} has ________ edges. The graph W_{105} has ________ 105 + 105 = 210 edges. The graph W_{105} has ________ 106 vertices. The graph W_{105} has _________ 15 + 17 = 255 edges. The graph $K_{15,17}$ has _________ 15 + 17 = 32 vertices. The graph $K_{15,17}$ has __________ 15 + 17 = 32 vertices. The graph $K_{m,n}$ is regular when _________ vertices. The graph $K_{m,n}$ is regular when _________ vertices. The graph C_n is bipartite when ________ n is even for $n \ge 3$. If the degree sequence of a graph G is 4, 3, 3, 2, 2 then G has ________ edges. The Handshaking Lemma states $\sum_{v \in V} deg(v) = 2e$. So, 2e = 4 + 3 + 3 + 2 + 2 = 14. A regular graph of degree four with 10 edges has ________ vertices. Let x be the number of vertices in the graph. As in the previous problem, $\sum_{v \in V} deg(v) = 2e$. So, 4x = 2 * 10 and x = 5.

2. (10 points) Represent $K_{1,4}$ with an adjacency matrix.

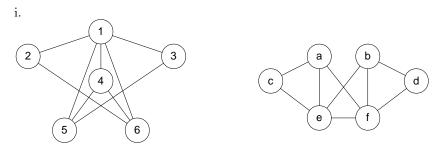
	0	1	1	1	1	
	1	0	0	0	0	
$A(K_{1,4}) =$	1	0	0	0	0	
. , .	$\begin{bmatrix} 0\\1\\1\\1\\1 \end{bmatrix}$	0	0 0	0	0	
	1	0	0	0	0	

3. (10 points) Draw the graph represented by the adjacency matrix A(G) =

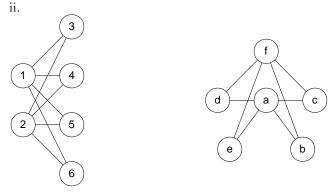
	0	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}$	1	1	1
) =	0	0	1	1	
	1	1	0	1	·
	1	1	1	0	



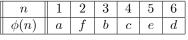
4. (20 points) Determine if the following pairs of graphs are isomorphic. If yes, provide an isomorphic mapping. If no, explain why.



These graphs are not isomorphic. The first graph has a vertex of degree 5 while the second graph has no such vertex.



These graphs are isomorphic. One possible isomorphism is



5. (15 points) Construct all non-isomorphic graphs with n = 5 vertices and e = 3 edges.

