Name
Instructions. Show all your work. Credit cannot and will not be awarded for work not shown. Where appropriate, simplify all answers to a single decimal expansion.

1. (10 points) Compute the following.
i. $\lfloor 1.1\rfloor=1$
ii. $\lceil-1.1\rceil=-1$
iii. $\left\lfloor\frac{1}{2}+\left\lfloor\frac{3}{2}\right\rfloor\right\rfloor=1$
2. (5 points) Let A and B be sets. Describe the proof strategy to show that $A=B$.

First show $A \subseteq B$. Second show $B \subseteq A$.
3. (15 points) Let A and B be sets. Prove $A \oplus B=(A-B) \cup(B-A)$.

First show $A \oplus B \subseteq(A-B) \cup(B-A)$. Let $x \in A \oplus B$. This implies that $(x \in A$ and $x \notin B)$ or $(x \notin A$ and $x \in B)$. If $x \in A$ and $x \notin B$ then $x \in A-B$ which forces $x \in(A-B) \cup(B-A)$. On the other hand if $x \notin A$ and $x \in B$ then $x \in B-A$ which also forces $x \in(A-B) \cup(B-A)$. So, $A \oplus B \subseteq(A-B) \cup(B-A)$. Now show $(A-B) \cup(B-A) \subseteq A \oplus B$. Let $x \in(A-B) \cup(B-A)$. This implies that $x \in A-B$ or $x \in B-A$. If $x \in A-B$ then $x \in A$ but $x \notin B$. However, $x \in A$ but $x \notin B$ puts $x \in A \oplus B$. Similarly, $\mathrm{f} x \in B-A$ then $x \in B$ but $x \notin A$. However, $x \in B$ but $x \notin A$ puts $x \in A \oplus B$. So, $(A-B) \cup(B-A) \subseteq A \oplus B$. Put the two steps together and $A \oplus B=(A-B) \cup(B-A)$.
4. (10 points) Why is $f(x)=\frac{1}{x^{2}-2}$ a function from \mathbb{Z} to \mathbb{R} but not a function from \mathbb{R} to \mathbb{R} ?

The quotient $\frac{1}{x^{2}-2}$ is undefined at $x= \pm \sqrt{2}$ which are real numbers but not integers. Thus, $f(x)=$ $\frac{1}{x^{2}-2}$ is defined on \mathbb{Z} but not on \mathbb{R}.
5. (10 points) i. Is floor a one-to-one function from \mathbb{R} to \mathbb{Z} ? Explain.

No! $\lfloor 1.2\rfloor=\lfloor 1.3\rfloor$ but $1.2 \neq 1.3$.
ii. Is floor an onto function from \mathbb{R} to \mathbb{Z} ? Explain.

Yes! Take any $n \in \mathbb{Z}$. Clearly $\lfloor n\rfloor=n$ and floor is an onto function.
6. (15 points) Find the terms of the sequence $\left\{a_{n}\right\}$, where $a_{n}=2(-3)^{n}+5^{n}$.
i. $a_{0}=2(-3)^{0}+5^{0}=3$
ii. $a_{2}=2(-3)^{2}+5^{2}=43$
iii. $a_{5}=2(-3)^{5}+5^{5}=2639$
7. (25 points) Compute the following.
i. $\sum_{i=1}^{164} i=\frac{164 * 165}{2}=13530$
ii. $\sum_{i=1}^{164} i^{2}=\frac{164 * 165(2 * 164+1)}{6}=1483790$
iii. $\sum_{i=156}^{934} i=\sum_{i=1}^{934} i-\sum_{i=1}^{155} i=436645-12090=424555$
iv. $\prod_{i=1}^{5} 2^{2 i-1}=2^{1} 2^{3} 2^{5} 2^{7} 2^{9}=2^{25}=33554432$
v. $\prod_{i=1}^{50}\left(i^{2}-100\right)=0$. Focus on the $i=10$ term.
8. (10 points) Let A be the collection of all integers that are multiples of 7. Prove $|A|=\aleph_{0}$.

Since we can write A as the ordered sequence $0,7,-7,14,-14,21,-21, \ldots, A$ can put put into a one-to-one and onto correspondence with \mathbb{Z}^{+}. Thus, $|A|=\aleph_{0}$.
9. (10 points) True or False? $(n+k)!=n!+k$!. If true, prove it. If false, provide a counter example. False! Consider $n=2$ and $k=3$. Note $(2+3)!=5!=120$ while $2!+3!=8$.

