Name_

Instructions. Show all your work. Credit cannot and will not be awarded for work not shown. Where appropriate, simplify all answers to a single decimal expansion.

1. (10 points) Compute the following.

i. $\lfloor 1.1 \rfloor = 1$ ii. $\lceil -1.1 \rceil = -1$ iii. $\lfloor \frac{1}{2} + \lfloor \frac{3}{2} \rfloor \rfloor = 1$

- 2. (5 points) Let A and B be sets. Describe the proof strategy to show that A = B. First show $A \subseteq B$. Second show $B \subseteq A$.
- 3. (15 points) Let A and B be sets. Prove $A \oplus B = (A B) \cup (B A)$. First show $A \oplus B \subseteq (A - B) \cup (B - A)$. Let $x \in A \oplus B$. This implies that $(x \in A \text{ and } x \notin B)$ or $(x \notin A \text{ and } x \in B)$. If $x \in A$ and $x \notin B$ then $x \in A - B$ which forces $x \in (A - B) \cup (B - A)$. On the other hand if $x \notin A$ and $x \in B$ then $x \in B - A$ which also forces $x \in (A - B) \cup (B - A)$. So, $A \oplus B \subseteq (A - B) \cup (B - A)$. Now show $(A - B) \cup (B - A) \subseteq A \oplus B$. Let $x \in (A - B) \cup (B - A)$. This implies that $x \in A - B$ or $x \in B - A$. If $x \in A - B$ then $x \in A$ but $x \notin B$. However, $x \in A$ but $x \notin A$ puts $x \in A \oplus B$. So, $(A - B) \cup (B - A) \subseteq A \oplus B$. Put the two steps together and $A \oplus B = (A - B) \cup (B - A)$.
- 4. (10 points) Why is $f(x) = \frac{1}{x^2-2}$ a function from \mathbb{Z} to \mathbb{R} but not a function from \mathbb{R} to \mathbb{R} ? The quotient $\frac{1}{x^2-2}$ is undefined at $x = \pm \sqrt{2}$ which are real numbers but not integers. Thus, $f(x) = \frac{1}{x^2-2}$ is defined on \mathbb{Z} but not on \mathbb{R} .
- 5. (10 points) i. Is floor a one-to-one function from R to Z? Explain. No! [1.2] = [1.3] but 1.2 ≠ 1.3.
 ii. Is floor an onto function from R to Z? Explain. Yes! Take any n ∈ Z. Clearly [n] = n and floor is an onto function.
- 6. (15 points) Find the terms of the sequence $\{a_n\}$, where $a_n = 2(-3)^n + 5^n$. i. $a_0 = 2(-3)^0 + 5^0 = 3$ ii. $a_2 = 2(-3)^2 + 5^2 = 43$ iii. $a_5 = 2(-3)^5 + 5^5 = 2639$
- 7. (25 points) Compute the following.

i.
$$\sum_{i=1}^{104} i = \frac{164*165}{2} = 13530$$

ii.
$$\sum_{i=1}^{164} i^2 = \frac{164*165(2*164+1)}{6} = 1483790$$

iii.
$$\sum_{i=156}^{934} i = \sum_{i=1}^{934} i - \sum_{i=1}^{155} i = 436645 - 12090 = 424555$$

iv.
$$\prod_{i=1}^{5} 2^{2i-1} = 2^1 2^3 2^5 2^7 2^9 = 2^{25} = 33554432$$

v.
$$\prod_{i=1}^{50} (i^2 - 100) = 0$$
. Focus on the $i = 10$ term.

- (10 points) Let A be the collection of all integers that are multiples of 7. Prove |A| = ℵ₀.
 Since we can write A as the ordered sequence 0, 7, -7, 14, -14, 21, -21, ..., A can put put into a one-to-one and onto correspondence with Z⁺. Thus, |A| = ℵ₀.
- 9. (10 points) True or False? (n + k)! = n! + k!. If true, prove it. If false, provide a counter example. False! Consider n = 2 and k = 3. Note (2 + 3)! = 5! = 120 while 2! + 3! = 8.