Math 3322 Quiz II
DeMaio Spring 2009
Name
Instructions. Show all your work. Credit cannot and will not be awarded for work not shown. Where appropriate, simplify all answers to a single decimal expansion.

1. (35 points) Compute each of the following.
i. $7!=5040$
ii. $\lceil 5.39\rceil=6$
iii. $\lfloor-4.55\rfloor=-5$
iv. $\sum_{i=5}^{9}(3 i-4)=85$
v. $\frac{152!}{150!}=152 * 151=22952$
vi. $\lceil 5.6+\lfloor\pi\rfloor\rceil=9$
vii. $\prod_{i=1}^{10}\left(i^{3}-125\right)=0$
2. (10 points) State the formula for the sum of the first n integers and use it to compute $\sum_{i=17}^{57} i$.
$\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
$\sum_{i=17}^{57} i=\sum_{i=17}^{57} i+\sum_{i=1}^{16} i-\sum_{i=1}^{16} i=\sum_{i=1}^{57} i-\sum_{i=1}^{16} i=\frac{57 * 58}{2}-\frac{16 * 17}{2}=1653-136=1517$
3. (10 points) State the formula for the sum of the cubes of the first n integers and use it to compute $\sum_{i=1}^{7} i^{3}$.
$\sum_{i=1}^{n} i^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$
$\sum_{i=1}^{7} i^{3}=\left(\frac{7 * 8}{2}\right)^{2}=784$
4. (5 points) Find the domain and range of the function that assigns to each non-negative integer its last digit.
The domain is $\mathbb{Z}^{+} \cup\{0\}$ and the range is $\{0,1,2,3,4,5,6,7,8,9\}$.
5. (10 points) Give an example of a function $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$that is one-to-one but not onto.

Let $f(n)=2 n$. The function $f(n)$ is one-to-one since $2 n=2 m$ implies that $n=m$. The function $f(n)$ is not onto since odd positive integers have no pre-image.
6. (5 points) For $a_{n}=2(-3)^{n}+5 n$ compute a_{1} and a_{4}.
$a_{1}=2(-3)^{1}+5 * 1=-1$
$a_{4}=2(-3)^{4}+5 * 4=182$
7. (5 points) Find a simple rule that generates the sequence $15,8,1,-6,-13,-20,-27, \ldots$
$a_{n}=22-7 n$ or $a_{n}=15-7(n-1)$
8. (10 points) Let A be the set of all integer multiples of 3 . Show $|A|=\aleph_{0}$.

The function $f: \mathbb{Z} \rightarrow 3 \mathbb{Z}$ via $f(n)=3 n$ is a one-to-one and onto function.
9. (10 points) Let A and B be countable sets. Prove $A \cup B$ is countable.

If A and B are countable sets then both can be written as $A=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ and $B=\left\{b_{1}, b_{2}, b_{3}, \ldots\right\}$. Now $A \cup B$ can be written as $\left\{a_{1}, b_{1}, a_{2}, b_{2}, a_{3}, b_{3}, \ldots\right\}$.
10. (5 points) Give an example of a set that is uncountable. Among others, \mathbb{R} or $(0,1)$ are the most common examples.
11. (10 points) Give an example of two sets A and B such that A is a proper subset of B yet $|A|=|B|$. The sets \mathbb{Z} and all integer multiples of 3 from question 8 form one possible example. Note that your sets must both be infinite.

