Name
Instructions. Show all your work. Credit cannot and will not be awarded for work not shown. Where appropriate, simplify all answers to a single decimal expansion.

1. (10 points) Give a recursive definition of the even positive integers.

Let $E_{n}=E_{n-1}+2$ for $n \geq 2$ where $E_{1}=2$.
2. (10 points) Let $r_{n}=\left(r_{n-1}\right)^{2}+1$ where $r_{1}=1$. Compute r_{2}, r_{3}, r_{4} and r_{5}.
$r_{2}=\left(r_{1}\right)^{2}+1=(1)^{2}+1=2$
$r_{3}=\left(r_{2}\right)^{2}+1=(2)^{2}+1=5$
$r_{4}=\left(r_{3}\right)^{2}+1=(5)^{2}+1=26$
$r_{5}=\left(r_{4}\right)^{2}+1=(26)^{2}+1=677$
3. (5 points) How many bit strings of length 8 exist? $2^{8}=256$
(5 points) How many bit strings of length 8 exist that begin with 10 and end with $01 ? 2^{4}=16$
(5 points) How many bit strings of length 8 exist that alternate 0 's and 1's? 2
4. (5 points) A particular brand of shirt comes in 12 colors, has a male and female version and comes in three sizes for each sex. How many different types of this shirt are made? $12 * 2 * 3=72$
5. (5 points) How many different passwords exist using four lowercase letters followed by two digits (0-9)? $26^{4} * 10^{2}=45697600$
(5 points) How many different passwords exist using four distinct lowercase letters followed by two distinct digits (0-9)? $26 * 25 * 24 * 23 * 10 * 9=32292000$
(5 points) How many different passwords exist using four distinct lowercase or uppercase letters followed by two distinct digits (0-9)? $52 * 51 * 50 * 49 * 10 * 9=584766000$
6. (5 points) In an attempt to raise productivity the CANE corporation is scheduled to publicly flog its six least productive employees. In how many different orders can these six employees be made an example of? $6!=720$
7. (20 points) Use induction to prove $\frac{3^{2 n}-5^{2 n+2}}{8} \in \mathbb{Z}$ for $n \in \mathbb{Z}^{+}$.
I. Show $S(1)$ is true. So, $\frac{3^{2 * 1}-5^{2 * 1+2}}{8}=-77$.
II. Show that if $S(n)$ is true then $S(n+1)$ is also true. Assume $\frac{3^{2 n}-5^{2 n+2}}{8} \in \mathbb{Z}$. Show $\frac{3^{2(n+1)}-5^{2(n+1)+2}}{8} \in$
\mathbb{Z}. Note that $\frac{3^{2(n+1)}-5^{2(n+1)+2}}{8}=\frac{3^{2 n+2}-5^{2 n+4}}{8}=\frac{9 * 3^{2 n}-25 * 5^{2 n+2}}{8}=\frac{9 * 3^{2 n}-9 * 5^{2 n+2}}{8}-\frac{16 * 5^{2 n+2}}{8}=9\left(\frac{3^{2 n}-5^{2 n+2}}{8}\right)-$ $2 * 5^{2 n+2}=9 *$ integer + integer $=$ integer.
8. (10 points) State the definition of the Fibonacci sequence.
$F_{n}=F_{n-1}+F_{n-2}$ where $F_{0}=0$ and $F_{1}=1$.
9. (20 points) Let B_{n} be the number of bit strings of length n that contain no consecutive 1's. Find and prove the correctness of a formula for B_{n}.
$B_{1}=2$

$B_{1}=2$	$B_{2}=3$	$B_{3}=5$	$B_{4}=8$	
0	00	000	0000	
1	10	100	1000	
	01	010	0100	
		001	0010	
		101	0001	
			1001	
			1010	

It appears that $B_{n}=F_{n+2}$. In order to prove this we need to show that $B_{n}=B_{n-1}+B_{n-2}$. Partition all B_{n} bit strings into two sets: those that end in 0 and those that end in 1. There are B_{n-1} strings
that end in 0 since you can add a 0 to end end of every bit string of length $n-1$. Those bits strings that end in 1, actually end in 01 . There are B_{n-2} of these since you can add 01 to the end of every bit string of length $n-2$. Thus, $B_{n}=B_{n-1}+B_{n-2}$.

