Math 4322 Quiz III
DeMaio Spring 2010
Name
Instructions. Show all your work. Credit cannot and will not be awarded for work not shown. Where appropriate, simplify all answers to a single decimal expansion.

1. (15 points) Consider the graph $G$ and compute each of the following.

i. $\omega(G)=2$
ii. $\beta_{0}(G)=5$
iii. $\gamma(G)=3$
2. (20 points) i. Compute $\beta_{0}\left(K_{4,7}\right) .7$
ii. Compute the number of different independent sets (of all sizes) in $K_{4,7} .1+2^{4}-1+2^{7}-1=143$ iii. Compute the number of different independent sets (of all sizes) in $K_{m, n}$. $1+2^{m}-1+2^{n}-1=$ $2^{m}+2^{n}-1$
3. (20 points) Prove that $P_{n}$ has $F_{n+2}$ independent sets. First note that $P_{1}$ has two independent sets: $\{\emptyset,\{1\}\}$ and $P_{2}$ has three independent sets: $\{\emptyset,\{1\},\{2\}\}$. In other words, $P_{1}$ has $F_{3}=2$ independent sets and $P_{2}$ has $F_{4}=3$ independent sets. So, the first two values of the Fibonacci sequence line up as we claim they should. Consider $P_{n}$. Every independent set of $P_{n}$ either includes $n$ or does not include $n$. If $n$ is not in the independent set then we really just have all the independent sets of $P_{n-1}$.
4. (15 points) Prove $\gamma\left(R_{n}\right)=n$. Keep in mind that such a proof will have two parts!

First place a rook on every square of the first row. Clearly the board is dominated and $\gamma\left(R_{n}\right) \leq n$. Can the board be dominated with $n-1$ rooks? When placing $n-1$ rooks there will be at least one row without a rook, say row $i$, and at least one column without a rook in it, say column $j$. This means that the $(i, j)$ square is not dominated. Hence, $n-1$ rooks are insufficient and $\gamma\left(R_{n}\right)>n-1$. Put the two together and $\gamma\left(R_{n}\right)=n$.
5. (10 points) Dominate a $5 \times 7$ board with 3 queens.

6. (10 points) Dominate a $6 \times 8$ board with 8 knights.

7. (10 points) Provide an example that shows $\beta_{0}\left(B_{4}\right)>4$.

| $B$ |  |  |  |
| :---: | :--- | :--- | :--- |
| $B$ |  |  | $B$ |
| $B$ |  |  | $B$ |
| $B$ |  |  |  |

8. (15 points) i. Give an example of a graph $G$ where $\gamma(G)=\beta_{0}(G)$. Both $C_{4}$ and $P_{4}$ have $\gamma(G)=$ $\beta_{0}(G)=2$.
ii. Prove $\gamma(G) \leq \beta_{0}(G)$. Let $S$ be an independent set of size $\beta_{0}(G)$. The set $S$ must dominate $G$. If $S$ is not a dominating set then there exists some vertex $v \in V$ such that $v \notin S$ and $v$ is not adjacent to any member of $S$. If that were true then $S \cup\{v\}$ would be an independent set of size $\beta_{0}(G)+1$. This is a blatant contradiction. Thus, $S$ must be a dominating set. This means a dominating set of minimum size has size less than or equal to the size of $S$. Hence, $\gamma(G) \leq \beta_{0}(G)$.
