Name
Instructions. Show all your work. Credit cannot and will not be awarded for work not shown. Where appropriate, simplify all answers to a single decimal expansion.

1. (20 points) Provide a combinatorial proof that $k\binom{n}{k}=n\binom{n-1}{k-1}$.

Let $A=\{1,2, \ldots, n\}$. Suppose $S$ is the collection of all possible combinations of lottery numbers of size $k$ where one number is the power ball. On the one hand, we can pick the $k$-set from $A$ in $\binom{n}{k}$ ways and then select the power ball number from that set in $k$ ways. Thus, $|S|=k\binom{n}{k}$. On the other hand we can pick the power ball from $A$ in $n$ ways and then pick the rest of the lottery numbers in $\binom{n-1}{k-1}$ ways. Now, $|S|=n\binom{n-1}{k-1}$. But, we have counted the same set $S$ in two different ways and $k\binom{n}{k}=n\binom{n-1}{k-1}$.
2. (25 points) A donut shop offers 15 different varieties of donuts. How many ways can
i. John select a dozen different donuts? $\binom{15}{12}=455$
ii. John, Paul and George each select one donut? $15^{3}=3375$
iii. Ringo purchase two dozen donuts for band rehearsal? $\binom{15+24-1}{24}=9669554100$
iv. Ringo purchase two dozen donuts with at least one of each type for band rehearsal? $\left(\begin{array}{c}15+9-1\end{array}\right)=$ 817190
v. Ringo purchase two dozen donuts with at least three jelly-filled donuts and no more than two glazed donuts?
$\binom{14+21-1}{21}+\binom{14+20-1}{20}+\binom{14+19-1}{19}=1848523800$
3. (10 points) How many strings of ternary digits ( 0,1 or 2 )
i. of length eight exist? $3^{8}=6561$
ii. of length eight that contain exactly three 0 's, two 1 's and three 2 's? $\frac{8!}{3!2!3!}=560$
4. (10 points) How many ways are there to choose 18 coins from a piggy bank containing 50 identical nickels, 100 identical dimes and 80 identical quarters? $\binom{3+18-1}{18}=190$
5. (10 points) What is the probability that a positive integer not exceeding 1000 selected at random is divisible by 9 or $15 ? p=\frac{\left\lfloor\frac{1000}{9}\right\rfloor+\left\lfloor\frac{1000}{15}\right\rfloor-\left\lfloor\frac{1000}{1 \operatorname{cm}(9,15)}\right\rfloor}{1000}=\frac{31}{200}=0.155$
6. (15 points) A single card is selected from a standard deck of playing cards. What is the probability that you draw
i. an Ace or a King? $p=\frac{4+4}{52}=\frac{2}{13}=0.15385$
ii. an Ace or a Heart? $p=\frac{5+13-1}{52}=\frac{4}{13}=0.30769$
7. (15 points) In a five card poker hand, compute the probability of a Full House. $p=\frac{13\binom{4}{3} 12\binom{4}{2}}{\binom{52}{5}}=$ $\frac{6}{4165}=1.4406 \times 10^{-3}$
8. (15 points) If a deck of cards contains two jokers (one red, one black) that can be any desired card, what is the probability of a Four of a Kind? $p=\frac{13\binom{6}{4} 48}{\binom{54}{5}}=\frac{8}{2703}=2.9597 \times 10^{-3}$

