Name
Instructions. Show all your work. Credit cannot and will not be awarded for work not shown. Where appropriate, simplify all answers to a single decimal expansion.

1. (20 points) Provide a combinatorial proof that $\binom{3 n}{2}=3\binom{n}{2}+3 n^{2}$.

Suppose $A=\{1,2, \ldots, 3 n\}$ and S is the collection of all subsets of size 2 from A. On the one hand, it is immediate that $|S|=\binom{3 n}{2}$. On the other hand partition A into $B=\{1,2, \ldots, n\}, C=$ $\{n+1, n+2, \ldots, 2 n\}$ and $D=\{2 n+1,2 n+2, \ldots 3 n\}$. How can we select two elements from A relative to B, C and D ? We can pick two from the same set in $3\binom{n}{2}$ ways. Or, we can select two sets and pick one element from each in $\binom{3}{2} n^{2}$ ways. Thus, $|S|=3\binom{n}{2}+3 n^{2}$. However, we've counted the same set S in two different ways and $\binom{3 n}{2}=3\binom{n}{2}+3 n^{2}$.
2. (25 points) A donut shop offers 15 different varieties of donuts. How many ways can
i. John select a dozen different donuts? $\binom{15}{12}=455$
ii. John, Paul and George each select one donut? $15^{3}=3375$
iii. Ringo purchase two dozen donuts for band rehearsal? $\binom{15+24-1}{24}=9669554100$
iv. Ringo purchase two dozen donuts with at least one of each type for band rehearsal? $\binom{15+9-1}{9}=$ 817190
v. Ringo purchase two dozen donuts with at least three jelly-filled donuts and no more than two glazed donuts?
$\binom{14+21-1}{21}+\binom{14+20-1}{20}+\binom{14+19-1}{19}=1848523800$
3. (10 points) How many strings can be made from the letters in
i. Aardvark? $\frac{8!}{3!2!}=3360$
ii. Aardvark if the three As must be consecutive? $\frac{6!}{2!}=360$
4. (10 points) How many ways are there to choose 18 coins from a piggy bank containing 50 identical nickels, 100 identical dimes and 80 identical quarters? $\binom{3+18-1}{18}=190$
5. (10 points) What is the probability that a positive integer not exceeding 1000 selected at random is divisible by 9 or 15 ?
$p=\frac{\left\lfloor\frac{1000}{9}\right\rfloor+\left\lfloor\frac{1000}{15}\right\rfloor-\left\lfloor\frac{1000}{1 \operatorname{cm}(9,15)}\right\rfloor}{1000}=\frac{31}{200}=0.155$
6. (15 points) A single card is selected from a standard deck of playing cards. What is the probability that you draw
i. an Ace or a King? $p=\frac{4+4}{52}=\frac{2}{13}=0.15385$
ii. an Ace or a Heart? $p=\frac{5+13-1}{52}=\frac{4}{13}=0.30769$
7. (15 points) In a five card poker hand, compute the probability of a Flush.
$p=\frac{4\binom{13}{5}-40}{\binom{52}{5}}=\frac{1277}{649740}=1.9654 \times 10^{-3}$
8. (15 points) If a deck of cards contains two jokers (one red, one black) that can be any desired card, what is the probability of a Royal Flush?
$p=\frac{4\binom{7}{5}}{\binom{54}{5}}=\frac{14}{527085}=2.6561 \times 10^{-5}$

