Math 4322 Quiz IV
DeMaio Spring 2009
Name
Instructions. Show all your work. Credit cannot and will not be awarded for work not shown. Where appropriate, simplify all answers to a single decimal expansion.

1. (10 points) Let $G=(V, E)$ be a graph. Carefully define a legal coloring of a graph and the chromatic number of a graph.
A legal coloring of a graph G is an assignment of colors to every vertex such that adjacent vertices are assigned different colors. The chromatic number of a graph G is the minimum number of colors needed to legally color G.
2. (20 points) Compute each of the following.
i. $\chi\left(K_{n}\right)=n$
ii. $\chi\left(K_{n, m}\right)=2$
iii. $\chi\left(\overline{K_{n, m}}\right)=\max \{n, m\}$
iv. $\chi\left(C_{n}\right)=\left\{\begin{array}{c}2 \text { if } n \text { is even } \\ 3 \text { if } n \text { is odd }\end{array}\right\}$
v. $\chi\left(W_{n}\right)=\left\{\begin{array}{l}3 \text { if } n \text { is even } \\ 4 \text { if } n \text { is odd }\end{array}\right\}$
3. (20 points) Find and prove the correctness of the chromatic number of the following graphs.
i.

color	vertices
red	$\{0,3,5,6\}$
blue	$\{2,4,8\}$
yellow	$\{1,7,9\}$

triangle formed by the vertices 0,1 and 2 forces the use of at least 3 colors and $\chi(G) \geq 3$. Put these two facts together and we have shown that $\chi(G)=3$.
ii.

color	vertices
red	$\{1,3\}$
blue	$\{2,4\}$
yellow	$\{5\}$
green	$\{6\}$

is a legal coloring of H with 4 colors. Thus, $\chi(H) \leq 4$. The existence of the cycle
of odd length formed by vertices $1,5,2,3$ and 4 forces the use of at least 3 colors. However, vertex 6 is adjacent to all five vertices in the cycle and a fourth color is required. Thus, $\chi(H) \geq 4$. Put these two facts together and we have shown that $\chi(H)=4$.
4. (10 points) Find $P\left(P_{n}, x\right)$.
$P\left(P_{n}, x\right)=x(x-1)^{n-1}$
5. (20 points) Determine the chromatic polynomial for each of the following graphs.
i.

$P(G, x)=x(x-1)(x-2)^{3}(x-3)=x^{6}-10 x^{5}+39 x^{4}-74 x^{3}+68 x^{2}-24 x$
ii.

$P(H, x)=x(x-1)(x-2)(x-3)^{2}(x-4)=x^{6}-13 x^{5}+65 x^{4}-155 x^{3}+174 x^{2}-72 x$
6. (10 points) For each of the graphs in the previous problem, find the number of different legal colorings using at most three colors.
i. $P(G, 0)=0$
ii. $P(H, 0)=0$
7. (10 points) Using the chromatic polynomial reduction formula, determine the chromatic polynomial of the following graph.

$P(G, x)=x(x-1)^{2}(x-2)^{2}-x(x-1)(x-2)(x-3)=x^{5}-7 x^{4}+19 x^{3}-23 x^{2}+10 x$.
8. (15 points) Let $G=(V, E)$ be a graph. Carefully define a legal edge coloring of a graph and the edge chromatic number of a graph. Find the edge chromatic number of W_{n}.
A legal edge coloring of a graph G is an assignment of colors to every edge such that adjacent edges are assigned different colors. The edge chromatic number of a graph G is the minimum number of colors needed to legally edge color G. The edge chromatic number of W_{n} is n. It is clear that at least n colors are needed to color the edges since the center vertex has degree n. The remaining cycle of edges can now easily be colored with n colors.

