Name
Instructions. Show all your work. Credit cannot and will not be awarded for work not shown. Where appropriate, simplify all answers to a single decimal expansion.

1. (15 points) Let $g_{0}=1$. Let $g_{n}=2^{g_{n-1}}$ for $n \geq 1$. Compute g_{1}, g_{2}, g_{3} and g_{4}.
$g_{1}=2^{g_{0}}=2^{1}=2$
$g_{2}=2^{g_{1}}=2^{2}=4$
$g_{3}=2^{g_{2}}=2^{4}=16$
$g_{4}=2^{g_{3}}=2^{16}=65536$
2. (10 points) Give a recursive definition of the set of positive integer powers of 5 .

Let $P_{1}=5$. Let $P_{n}=5 P_{n-1}$ for $n \geq 2$.
3. (10 points) State the recursive definition of the Fibonacci sequence.

Let $f_{0}=0$ and $f_{1}=1$. For $n \geq 2, f_{n}=f_{n-1}+f_{n-2}$.
4. (10 points) Complete the table of Fibonacci numbers.

n	0	1	2	3	4	5	6	7	8	9	10
f_{n}	0	1	1	2	3	5	8	13	21	34	55

5. (15 points) There are n chairs and some collection of people (including none) will sit in the seats but there will always be at least one empty chair between any two people. Let A_{n} be the number of antisocial ways to seat some number of people in these n seats as described. Construct all possible arrangements and compute A_{n} for all values up to $n=3$. Find and prove the correctness of a formula for A_{n}.

Let 0 represent an empty seat and let 1 represent a seat with a person.

n	arrangements	A_{n}
1	0,1	2
2	$00,10,01$	3
3	$000,101,100,010,001$	5

We conjecture that $A_{n}=f_{n+2}$. Certainly the first few values are the same. It remains to show that A_{n} follows the same recurrence. Show $A_{n}=A_{n-1}+A_{n-2}$. We can partition all A_{n} arrangements into those that end with an empty seat and those that end with a person. An empty seat can be added to any arrangement of $n-1$ seats. Thus, there are A_{n-1} arrangements of n seats that end with an empty seat. An empty seat and a person can be added to the end of every arrangement of $n-2$ seats. Thus, there exist A_{n-2} arrangements that end with a person. Hence, $A_{n}=A_{n-1}+A_{n-2}$.
6. (15 points) Use induction to prove $\sum_{i=1}^{n} f_{i}^{2}=f_{n} f_{n+1}$ for the Fibonacci sequence and $n \in Z^{+}$.

First show that the base case of $n=1$ hold true.
R.H.S. $\sum_{i=1}^{1} f_{i}^{2}=f_{1}^{2}=1^{2}=1$
L.H.S. $f_{1} f_{1+1}=f_{1} f_{2}=1 * 1=1$

Assume the statement is true for $n: \sum_{i=1}^{n} f_{i}^{2}=f_{n} f_{n+1}$. Show that the statement is true for $n+1: \sum_{i=1}^{n+1} f_{i}^{2}=f_{n+1} f_{n+2}$.

Note that $\sum_{i=1}^{n+1} f_{i}^{2}=\sum_{i=1}^{n} f_{i}^{2}+f_{n+1}^{2}$ which by the inductive hypothesis is $f_{n} f_{n+1}+f_{n+1}^{2}=f_{n+1}\left(f_{n}+f_{n+1}\right)=f_{n+1} f_{n+2}$.
7. (5 points) How many bit strings of length 6 exist? $2^{6}=64$
8. (5 points) How many bit strings of length 6 exist that end and begin with 0 ? $2^{4}=16$
9. (5 points) Consider a twenty person club. How many different ways can a President, Vice-President and Treasurer be elected? $20 * 19 * 18=6840$
10. (5 points) Consider the twenty person club made up of eight men and twelve women. How many ways can a President and Vice-President of opposite gender must be selected? $12 * 8 * 2=192$
11. (5 points) A theater concession counter offers four different sizes of drinks and eight different choices of beverages. How many different ways can a drink be ordered? $4 * 8=$ 32
12. (5 points each) Two married couples, two single men and one single woman sit in a row of seven consecutive seats. How many ways can they be seated
i. with no restrictions? $7!=5040$
ii. alternating genders? With 4 men and 3 women the only way to alternate gender is with a MWMWMWM arrangement. Hence there exist $4 * 3 * 3 * 2 * 2 * 1 * 1=4!* 3!=$ 144 different arrangements.
iii. such that the women are all consecutive? There are 3 ! ways to arrange the women in a consecutive block of seats. Now we have 4 men and 1 block of women to arrange. There are a total of $3!* 5!=720$ legal arrangements.
iv. such that spouses sit next to one another. As in part iii we need to arrange each married couple in a block. Each married couple can be arranged in $2!=2$ ways. Now we are left with 5 types of objects to arrange in seats. There are a total of $2!* 2!* 5!=$ 480 different arrangements.

