Name_

Instructions. Show all your work. Credit cannot and will not be awarded for work not shown. Where appropriate, simplify all answers to a single decimal expansion.

1. (15 points) Let $g_0 = 1$. Let $g_n = 2^{g_{n-1}}$ for $n \ge 1$. Compute g_1, g_2, g_3 and g_4 .

 $g_1 = 2^{g_0} = 2^1 = 2$ $g_2 = 2^{g_1} = 2^2 = 4$ $g_3 = 2^{g_2} = 2^4 = 16$ $g_4 = 2^{g_3} = 2^{16} = 65536$

- 2. (10 points) Give a recursive definition of the set of positive integer powers of 5. Let $P_1 = 5$. Let $P_n = 5P_{n-1}$ for $n \ge 2$.
- **3**. (10 points) State the recursive definition of the Fibonacci sequence. Let $f_0 = 0$ and $f_1 = 1$. For $n \ge 2$, $f_n = f_{n-1} + f_{n-2}$.
- 4. (10 points) Complete the table of Fibonacci numbers.

n	0	1	2	3	4	5	6	7	8	9	10
f_n	0	1	1	2	3	5	8	13	21	34	55

5. (15 points) There are *n* chairs and some collection of people (including none) will sit in the seats but there will always be at least one empty chair between any two people. Let A_n be the number of antisocial ways to seat some number of people in these *n* seats as described. Construct all possible arrangements and compute A_n for all values up to n = 3. Find and prove the correctness of a formula for A_n .

Let 0 represent an empty seat and let 1 represent a seat with a person.

n	arrangements	A_n
1	0,1	2
2	00,10,01	3
3	000,101,100,010,001	5

We conjecture that $A_n = f_{n+2}$. Certainly the first few values are the same. It remains to show that A_n follows the same recurrence. Show $A_n = A_{n-1} + A_{n-2}$. We can partition all A_n arrangements into those that end with an empty seat and those that end with a person. An empty seat can be added to any arrangement of n - 1 seats. Thus, there are A_{n-1} arrangements of n seats that end with an empty seat. An empty seat and a person can be added to the end of every arrangement of n - 2 seats. Thus, there exist A_{n-2} arrangements that end with a person. Hence, $A_n = A_{n-1} + A_{n-2}$.

6. (15 points) Use induction to prove $\sum_{i=1}^{n} f_i^2 = f_n f_{n+1}$ for the Fibonacci sequence and $n \in Z^+$.

First show that the base case of n = 1 hold true.

R.H.S.
$$\sum_{i=1}^{1} f_i^2 = f_1^2 = 1^2 = 1$$

L.H.S. $f_1 f_{1+1} = f_1 f_2 = 1 * 1 = 1$

Assume the statement is true for n: $\sum_{i=1}^{n} f_i^2 = f_n f_{n+1}$. Show that the statement is true for n+1: $\sum_{i=1}^{n+1} f_i^2 = f_{n+1} f_{n+2}$.

Note that $\sum_{i=1}^{n+1} f_i^2 = \sum_{i=1}^n f_i^2 + f_{n+1}^2$ which by the inductive hypothesis is $f_n f_{n+1} + f_{n+1}^2 = f_{n+1}(f_n + f_{n+1}) = f_{n+1}f_{n+2}$.

- 7. (5 points) How many bit strings of length 6 exist? $2^6 = 64$
- 8. (5 points) How many bit strings of length 6 exist that end and begin with $0?2^4 = 16$
- **9**. (5 points) Consider a twenty person club. How many different ways can a President, Vice-President and Treasurer be elected? 20 * 19 * 18 = 6840
- 10. (5 points) Consider the twenty person club made up of eight men and twelve women. How many ways can a President and Vice-President of opposite gender must be selected? 12 * 8 * 2 = 192
- (5 points) A theater concession counter offers four different sizes of drinks and eight different choices of beverages. How many different ways can a drink be ordered?4 * 8 = 32
- 12. (5 points each) Two married couples, two single men and one single woman sit in a row of seven consecutive seats. How many ways can they be seated i. with no restrictions? 7! = 5040

ii. alternating genders? With 4 men and 3 women the only way to alternate gender is with a MWMWMWM arrangement. Hence there exist 4 * 3 * 3 * 2 * 2 * 1 * 1 = 4! * 3! = 144 different arrangements.

iii. such that the women are all consecutive? There are 3! ways to arrange the women in a consecutive block of seats. Now we have 4 men and 1 block of women to arrange. There are a total of 3! * 5! = 720 legal arrangements.

iv. such that spouses sit next to one another. As in part iii we need to arrange each married couple in a block. Each married couple can be arranged in 2! = 2 ways. Now we are left with 5 types of objects to arrange in seats. There are a total of 2! * 2! * 5! = 480 different arrangements.