Name
Instructions. Show all your work. Credit cannot and will not be awarded for work not shown. Where appropriate, simplify all answers to a single decimal expansion.

1. (30 points) How many strings of eight lowercase English letter are there;
a) if letters can be repeated; $26^{8}=208827064576$
b) if no letters can be repeated; $26 * 25 * 24 * 23 * 22 * 21 * 20 * 19=62990928000$
c) that start with ' x ' if letters can be repeated; $26^{7}=8031810176$
d) that start with ' x ' if no letters can be repeated; $25 * 24 * 23 * 22 * 21 * 20 * 19=2422728000$
$e)$ that start with 'ma' (in that order) if letters can be repeated; $26^{6}=308915776$
f) that contains the word math 'math' (in that order but not necessarily at the start) if letters can be repeated? There are only 5 possible places to begin the word math": with letter \# 1 through 5. If you start the word "math" on letter $\# 6$ through 8 you will not be able to complete the word before running out of room in the string of 8 letters. $5 * 26^{4}=2284880$
2. (15 points) How many different functions are there from a set with 5 elements to a set with:
a) 3 elements; $3^{5}=243$
b) 5 elements; $5^{5}=3125$
c) 7 elements? $7^{5}=16807$
3. (15 points) How many different one-to-one functions are there from a set with 5 elements to a set with:
a) 3 elements; 0
b) 5 elements; $5!=120$
c) 7 elements? $\frac{7!}{2!}=2520$
4. (10 points) How many positive integers between 1 and 100 are divisible by 7 or 11 ? $\left\lfloor\frac{100}{7}\right\rfloor+\left\lfloor\frac{100}{11}\right\rfloor-$ $\left\lfloor\frac{100}{77}\right\rfloor=22$
5. (10 points) In a group of 45 people, 23 have brown hair and 18 have brown eyes and 6 have both brown hair and brown eyes. How many have either brown hair or brown eyes? $23+18-6=35$
6. (15 points) Let $A=\{a, b, c\}$. There exist $2^{3}=8$ different subsets of A and there are $2^{3}=8$ different bit strings of length three. Construct all elements in each set and explain how the elements correspond to each other.
A 0 in space i indicates that element i should be excluded from the subset. A 1 in space i indicates that element i should be included from the subset.

Bit strings	$P(A)$
000	\emptyset
100	$\{a\}$
010	$\{b\}$
001	$\{c\}$
110	$\{a, b\}$
101	$\{a, c\}$
011	$\{b, c\}$
111	$\{a, b, c\}$

7. (10 points) Show that among any group of five (not necessarily consecutive) integers, there are two with the same remainder when divided by 4 . Be very explicit with your application of the Pigeonhole Principle. There are four possible remainders upon division by 4: 0, 1, 2 and 3. There are four pigeonholes labeled by these possible remainders. The integers are our 5 pigeons. We place each integer into a pigeonhole corresponding to its remainder after dividing by 4 . We have placed 5 pigeons into 4 pigeonholes. Thus, at least one pigeonhole contains at least two pigeons. This shows that at least two of our five integers yield the same remainder after division by 4 .
8. (10 points) John has 13 ordinary coins (pennies, nickels, dimes and quarters) in his pocket.
a) At least how many of the same coin must John have? $\left\lceil\frac{13}{4}\right\rceil=4$
b)At least how many pennies must John have? 0
9. (5 points) Jason's CD collection consists of five different rock CD's, three different jazz CD's, two different blues CD's, two different classical CD's and a single folk CD. Jason is planning a trip and randomly selects four CD's. How many different ways can this be done? $\binom{13}{4}=715$
