Computation

Compute the following: (3 points each)

- 1. 10! =2. $\frac{500!}{502!} =$ 3. $\begin{pmatrix} 18\\4 \end{pmatrix} =$ 4. $\begin{cases} 4\\2 \end{cases} =$
- 5. $\begin{bmatrix} 4 \\ 2 \end{bmatrix} =$ 6. $\chi(K_{73}) =$;
- 7. $\chi(K_{45,89}) = ___;$ 8. $\chi(\overline{K_{n,m}}) = __;$
- 9. The number of functions $f: D \to R$ where $D = \{1, 2, 3, 4\}$ and $R = \{a, b, c, d, e, f\}$.
- 10. The number of onto functions $f: D \rightarrow R$ where $D = \{1, 2, 3, 4\}$ and $R = \{a, b, c, d, e, f\}$.
- 11. The number of 1-1 functions $f: D \to R$ where $D = \{1, 2, 3, 4\}$ and $R = \{a, b, c, d, e, f\}$.

12. The number of 1-1 and onto functions $f: D \to R$ where $D = \{1, 2, 3, 4\}$ and $R = \{a, b, c, d, e, f\}$.

13. If
$$P(G, x) = x(x-1)^7 - x(x-1)^5(x-2)$$
 then $\chi(G) =$ _____.

14. $\chi(C_{73}) = ___;$ 15. $\chi(C_{176}) = __;$

Mathematics of the Chessboard

Compute the following. (3 points each)

- 1. $\gamma(K_7) =$ _____. 2. $\gamma(Q_8) =$ _____. 3. $\gamma(B_{27}) =$ _____. 4. $\gamma(R_{35}) =$ _____. 5. $\gamma(K_{4,7}) =$ _____; 6. $\gamma(R_{7,132}) =$ _____.
- 7. $\gamma_t(R_{35}) =$ _____.

8. (10 points) Carefully show that a closed knight's tour does not exist on the 3 by 4 board.

1	2	3	4
5	6	7	8
9	10	11	12

9. (10 points) Demonstrate the Spencer-Cockayne construction for dominating the 9×9 chessboard with queens.

Proof

1. (10 points) Use induction to prove
$$\sum_{i=1}^{n} i^3 = \frac{n^2 * (n+1)^2}{4}$$
 for all positive integers *n*.

Math 4322

2. (10 points) Combinatorially prove
$$\begin{cases} n \\ n-2 \end{cases} = \begin{pmatrix} n \\ 3 \end{pmatrix} + \frac{\begin{pmatrix} n \\ 2 \end{pmatrix} \begin{pmatrix} n-2 \\ 2 \end{pmatrix}}{2}$$
.

3. (10 points) Let G = (V, E) be a graph with $n \ge 2$ vertices. Use the pigeonhole principle to prove that there must exist $a, b \in V$ such that $\deg(a) = \deg(b)$.