Computation

Compute the following: (3 points each)

1. $10!=$
2. $\frac{500!}{502!}=$
3. $\binom{18}{4}=$
4. $\left\{\begin{array}{l}4 \\ 2\end{array}\right\}=$
5. $\left[\begin{array}{l}4 \\ 2\end{array}\right]=$
6. $\chi\left(K_{73}\right)=$ \qquad ;
7. $\chi\left(K_{45,89}\right)=$ \qquad ;
8. $\chi\left(\overline{K_{n, m}}\right)=\longrightarrow$; ;
9. The number of functions $f: D \rightarrow R$ where $D=\{1,2,3,4\}$ and $R=\{a, b, c, d, e, f\}$.
10. The number of onto functions $f: D \rightarrow R$ where $D=\{1,2,3,4\}$ and $R=\{a, b, c, d, e, f\}$.
11. The number of $1-1$ functions $f: D \rightarrow R$ where $D=\{1,2,3,4\}$ and $R=\{a, b, c, d, e, f\}$.
12. The number of 1-1 and onto functions $f: D \rightarrow R$ where $D=\{1,2,3,4\}$ and $R=\{a, b, c, d, e, f\}$.
13. If $P(G, x)=x(x-1)^{7}-x(x-1)^{5}(x-2)$ then $\chi(G)=$ \qquad .
14. $\chi\left(C_{73}\right)=$ \qquad
15. $\chi\left(C_{176}\right)=$ \qquad

Mathematics of the Chessboard

Compute the following. (3 points each)

1. $\gamma\left(K_{7}\right)=$ \qquad .
2. $\gamma\left(Q_{8}\right)=$ \qquad .
3. $\gamma\left(B_{27}\right)=$ \qquad .
4. $\gamma\left(R_{35}\right)=$ \qquad .
5. $\gamma\left(K_{4,7}\right)=$ \qquad ;
6. $\gamma\left(R_{7,132}\right)=$ \qquad .
7. $\gamma_{t}\left(R_{35}\right)=$ \qquad .
8. (10 points) Carefully show that a closed knight's tour does not exist on the 3 by 4 board.

1	2	3	4
5	6	7	8
9	10	11	12

9. (10 points) Demonstrate the Spencer-Cockayne construction for dominating the 9×9 chessboard with queens.

Proof

1. (10 points) Use induction to prove $\sum_{i=1}^{n} i^{3}=\frac{n^{2} *(n+1)^{2}}{4}$ for all positive integers n.
2. (10 points) Combinatorially prove $\left\{\begin{array}{c}n \\ n-2\end{array}\right\}=\binom{n}{3}+\frac{\binom{n}{2}\binom{n-2}{2}}{2}$.
3. (10 points) Let $G=(V, E)$ be a graph with $n \geq 2$ vertices. Use the pigeonhole principle to prove that there must exist $a, b \in V$ such that $\operatorname{deg}(a)=\operatorname{deg}(b)$.
