Name

Instructions. Show all your work. Credit cannot and will not be awarded for work not shown. Where appropriate, simplify all answers to a single decimal expansion.

Preliminaries

- 1. (5 points) List the members of the set $S = \{x | x \in \mathbb{Z}^+, 50 \le x^3 \le 150\}$. $S = \{4, 5\}$
- 2. (5 points) Construct P(A) for $A = \{*, a, 3\}$. $P(A) = \{\emptyset, \{*\}, \{a\}, \{3\}, \{*, a\}, \{*, 3\}, \{a, 3\}, \{*, a, 3\}\}$
- 3. (5 points) Compute |P(A)| for $A = \{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31\}$. $|P(A)| = 2^{11} = 2048$
- 4. (5 points) Give an example of sets A and B such that B is a proper subset of A and |A| = |B|. Let A = Z and let $B = Z^+$.
- 5. (5 points) In a Venn diagram, shade $\overline{A \oplus B}$.

- 6. (5 points) Let A be the set of students who live within one mile of campus. Let B be the set of all students who walk to class. What does it mean to say Mary is a member of the set $\overline{A} \cap B$? Mary walks more than one mile to her classes on campus.
- 7. (5 points) Compute $\left[-\frac{3}{2} + \left[\frac{1}{2} + \left[-\frac{5}{2}\right]\right]\right]$. $\left[-\frac{3}{2} + \left[\frac{1}{2} + \left[-\frac{5}{2}\right]\right]\right] = -4$
- 8. (5 points) Find the domain and range of the function that assigns to each positive integer its last digit. The domain is Z^+ . The range is $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$.
- 9. (5 points) Give an example of a function $f: \mathbb{Q} \to Z^+$ that is neither one-to-one nor onto. Let $f(\frac{a}{b}) = a^2b^2$.
- 10. (5 points) Compute $\sum_{i=50}^{175} i$. $\sum_{i=50}^{175} i = \sum_{i=1}^{175} i - \sum_{i=1}^{49} i = \frac{175*176}{2} - \frac{49*50}{2} = 14175.$
- 11. (5 points) Compute $\prod_{-533}^{278} (i^3 8)$.

Since 2 is an integer between -533 and 278 the product contains the term $2^3 - 8 = 0$ and is 0.

12. (5 points) Compute $\frac{100!}{95!5!}$. $\frac{100!}{95!5!} = \frac{100*99*98*97*96}{120} = 75\,287\,520.$

Problems

13. (10 points) True or False? If true, prove it. If false, provide a counter-example. (j+k)! = j! + k!

False! Let
$$k = j = 2$$
. Then $(j + k)! = (2 + 2)! = 41 = 24$ while $2! + 2! = 2 + 2 = 4$.

14. (15 points) Prove $|Q^+| = \aleph_0$.

	1 2	3	4	5	б	7	8	
1	$\begin{array}{c c} \frac{1}{1} & \frac{1}{2} \\ \frac{2}{1} & \frac{2}{2} \end{array}$	$\rightarrow \frac{1}{3}$	$\frac{1}{4}$ -	$\frac{1}{5}$	$\frac{1}{6}$	$\frac{1}{7}$	1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 8 8 8	
2		$\frac{2}{3}$	2 K	2/5	2 K	2 7	2 8	
3	$\begin{array}{c c} 3 \\ \hline 1 \\ \hline 4 \\ \hline 1 \\ \hline 5 \\ \hline 1 \\ \hline 6 \\ \hline 1 \end{array}$	7 3 K	$\frac{3}{4}$	3 ×	<u>3</u>	3 7	3 8	
4	4/2	7 3 ×	4 K	<u>4</u> 5	4 6	47	4 8	
5	$\frac{5}{1}$ $\frac{5}{2}$	5 K	5 4	<u>5</u> 5	<u>5</u>	<u>5</u>	<u>5</u> 8	
б	6 2	7 5	6 4	<u>6</u> 5	6	<u>6</u> 7	<u>6</u> 8	
7	$\begin{array}{c c} \frac{7}{1} & \frac{7}{2} \\ \frac{8}{1} & \frac{8}{2} \end{array}$	7 7 3 8 3	3 4 4 5 4 5 4 6 4 7 4 8 4	5 3 5 4 5 5 6 5 7 5 8 5	3 6 4 6 5 6 6 6 7 6 8 6	\$\frac{1}{7}\$ \$\frac{2}{7}\$ \$\frac{3}{7}\$ \$\frac{4}{7}\$ \$\frac{5}{7}\$ \$\frac{6}{7}\$ \$\frac{7}{7}\$ \$\frac{8}{7}\$	7 8	
8	$\frac{1}{8}$ $\frac{2}{1}$ $\frac{8}{2}$	8 3	8 4	<u>8</u> 5	8	8 7	8	
÷	:							

from http://www.homeschoolmath.net/teaching/rational-numbers-countable.php.

- 15. (15 points) Use mathematical induction to prove $\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$ for all $n \in \mathbb{Z}^+$.
 - I. Show that S(1) is true. L.H.S. $\sum_{i=1}^{1} i^3 = 1^3 = 1$. R.H.S. $\frac{1^2(1+1)^2}{4} = \frac{4}{4} = 1$. Thus, S(1) is true.
 - II. Assume $\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$ and show $\sum_{i=1}^{n+1} i^3 = \frac{(n+1)^2(n+2)^2}{4}$.

 $\sum_{i=1}^{n+1} i^3 = \sum_{i=1}^{n} i^3 + (n+1)^3 \text{ which by the inductive hypothesis is } \frac{n^2(n+1)^2}{4} + (n+1)^3 = \frac{n^2(n+1)^2}{4} + \frac{4(n+1)^3}{4} = \frac{(n+1)^2 \left[n^2 + 4(n+1)\right]}{4} = \frac{(n+1)^2 \left[n^2 + 4(n+1)\right]}{4} = \frac{(n+1)^2 \left[n^2 + 4(n+1)\right]}{4}.$

16. (15 points) Let A and B be sets such that $|A| = |B| = \aleph_0$. Prove $|A \cup B| = \aleph_0$. Since A and B are countable sets we can write each as $a_1, a_2, a_3...$ and $b_1, b_2, b_3...$ We can now write $A \cup B$ as $a_1, b_1, a_2, b_2, a_3, b_3, ...$ Since we can order the infinite number of elements of $A \cup B$ it follows that $|A \cup B| = \aleph_0$.