Math 3322 Test 1
DeMaio Spring 2010
Name
Instructions. Show all your work. Credit cannot and will not be awarded for work not shown. Where appropriate, simplify all answers to a single decimal expansion.

Preliminaries

1. (5 points) List the members of the set $S=\left\{x \mid x \in Z^{+}, 50 \leq x^{3} \leq 150\right\}$. $S=\{4,5\}$
2. (5 points) Construct $P(A)$ for $A=\{*, a, 3\}$. $P(A)=\{\emptyset,\{*\},\{a\},\{3\},\{*, a\},\{*, 3\},\{a, 3\},\{*, a, 3\}\}$
3. (5 points) Compute $|P(A)|$ for $A=\{2,3,5,7,11,13,17,19,23,29,31\}$. $|P(A)|=2^{11}=2048$
4. (5 points) Give an example of sets A and B such that B is a proper subset of A and $|A|=|B|$.

Let $A=Z$ and let $B=Z^{+}$.
5. (5 points) In a Venn diagram, shade $\overline{A \oplus B}$.

6. (5 points) Let A be the set of students who live within one mile of campus. Let B be the set of all students who walk to class. What does it mean to say Mary is a member of the set $\bar{A} \cap B$? Mary walks more than one mile to her classes on campus.
7. (5 points) Compute $\left\lfloor-\frac{3}{2}+\left\lfloor\frac{1}{2}+\left\lceil-\frac{5}{2}\right\rceil\right\rfloor\right\rfloor$.
$\left\lfloor-\frac{3}{2}+\left\lfloor\frac{1}{2}+\left\lceil-\frac{5}{2}\right\rceil\right\rfloor\right\rfloor=-4$
8. (5 points) Find the domain and range of the function that assigns to each positive integer its last digit. The domain is Z^{+}. The range is $\{0,1,2,3,4,5,6,7,8,9\}$.
9. (5 points) Give an example of a function $f: \mathbb{Q} \rightarrow Z^{+}$that is neither one-to-one nor onto.

Let $f\left(\frac{a}{b}\right)=a^{2} b^{2}$.
10. (5 points) Compute $\sum_{i=50}^{175} i$.
$\sum_{i=50}^{175} i=\sum_{i=1}^{175} i-\sum_{i=1}^{49} i=\frac{175 * 176}{2}-\frac{49 * 50}{2}=14175$.
11. (5 points) Compute $\prod_{-533}^{278}\left(i^{3}-8\right)$.

Since 2 is an integer between -533 and 278 the product contains the term $2^{3}-8=0$ and is 0 .
12. (5 points) Compute $\frac{100!}{95!5!}$.
$\frac{100!}{95!5!}=\frac{100 * 99 * 98 * 97 * 96}{120}=75287520$.
Problems
13. (10 points) True or False? If true, prove it. If false, provide a counter-example.
$(j+k)!=j!+k!$
False! Let $k=j=2$. Then $(j+k)!=(2+2)!=41=24$ while $2!+2!=2+2=4$.
14. (15 points) Prove $\left|Q^{+}\right|=\aleph_{0}$.

from http://www.homeschoolmath.net/teaching/rational-numbers-countable.php.
15. (15 points) Use mathematical induction to prove $\sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}$ for all $n \in Z^{+}$.
I. Show that $S(1)$ is true. L.H.S. $\sum_{i=1}^{1} i^{3}=1^{3}=1$. R.H.S. $\frac{1^{2}(1+1)^{2}}{4}=\frac{4}{4}=1$. Thus, $S(1)$ is true.
II. Assume $\sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}$ and show $\sum_{i=1}^{n+1} i^{3}=\frac{(n+1)^{2}(n+2)^{2}}{4}$.
$\sum_{i=1}^{n+1} i^{3}=\sum_{i=1}^{n} i^{3}+(n+1)^{3}$ which by the inductive hypothesis is $\frac{n^{2}(n+1)^{2}}{4}+(n+1)^{3}=\frac{n^{2}(n+1)^{2}}{4}+\frac{4(n+1)^{3}}{4}=$ $\frac{(n+1)^{2}\left[n^{2}+4(n+1)\right]}{4}=\frac{(n+1)^{2}\left[n^{2}+4 n+4\right]}{4}=\frac{(n+1)^{2}(n+2)^{2}}{4}$.
16. (15 points) Let A and B be sets such that $|A|=|B|=\aleph_{0}$. Prove $|A \cup B|=\aleph_{0}$.

Since A and B are countable sets we can write each as $a_{1}, a_{2}, a_{3} \ldots$ and $b_{1}, b_{2}, b_{3} \ldots$. We can now write $A \cup B$ as $a_{1}, b_{1}, a_{2}, b_{2}, a_{3}, b_{3}, \ldots$. Since we can order the infinite number of elements of $A \cup B$ it follows that $|A \cup B|=\aleph_{0}$.

