Name

Instructions. Show all your work. Credit cannot and will not be awarded for work not shown. Where appropriate, simplify all answers to a single decimal expansion.

- 1. (10 points) Let $S = \{x | x \in \mathbb{Z}^+, x \text{ is a solution of } (x^2 4)(2x + 7) = 0\}$. List the elements of S. $S = \{2\}$.
- 2. (10 points) Use set builder notation to define the set of all rational numbers. $\mathbb{Q} = \{\frac{a}{b} | a, b \in \mathbb{Z}, b \neq 0\}$
- 3. (10 points) Let $A = \{1, \{1\}\}$. Construct P(A). $P(A) = \{\emptyset, \{1\}, \{\{1\}\}, \{1, \{1\}\}\}$
- 4. (15 points) Compute the cardinality of each of the following sets. i. \emptyset ; $|\emptyset| = 0$ ii. $B = \{1, 2, 3, \{\alpha, \omega, 1\}, \beta, c, \{1\}, \{\{\alpha, \beta, \gamma, \delta\}\}, \mathbb{Z}, \mathbb{Z}^+, \mathbb{R}\}; |B| = 11$ iii. P(C) for $C = \{1, 2, 3, ..., 10\}$. $|P(C)| = 2^{10} = 1024$
- 5. (35 points) Let S = {{1}, {3}, 2, 3, ∅}. Answer the following without explanation.
 i. Is 1 ⊆ S? No.
 ii. Is {2,3} ⊆ S? Yes.
 - iii. Is $\{1, 3\} \in S$? No.
 - iv. Is $\phi \in S$? Yes.
 - v. Is $\{\emptyset\} \in S$? No.
 - vi. Is $\{3, \{2, 3\}\} \subseteq S$? No.
 - vii. Is $(3, \{3\}) \in S \times S$?Yes
- 6. Let A and B be sets.

i. (5 points) State the definition of A is a **subset** of B. A is a **subset** of B if every element in A is also an element in B.

ii. (5 points) What is the difference in meaning of $A \subseteq B$ versus $A \subset B$? In $A \subseteq B$, we allow for the possibility that A = B. In $A \subset B$, we know that $A \neq B$.

iii. (10 points) Give an example of two sets A and B such that $A \in B$ and $A \subseteq B$. Many examples exist. Let $A = \{1\}$ and $B = \{1, \{1\}\}$.

7. (10 points) Let A and B be nonempty sets such that $A \neq B$. Prove $A \times B \neq B \times A$. If $A \neq B$ then there exists (without loss of generality) $x \in A$ such that $x \notin B$. Let $y \in B$. Note that $(x, y) \in A \times B$ but since $x \notin B$ it is clear that $(x, y) \notin B \times A$.