Math 3322 Test I
DeMaio Spring 2011
Name
Instructions. Show all your work. Credit cannot and will not be awarded for work not shown. Where appropriate, simplify all answers to a single decimal expansion.

1. (10 points) Let $S=\left\{x \mid x \in \mathbb{Z}^{+}, x\right.$ is a solution of $\left.\left(x^{2}-4\right)(2 x+7)=0\right\}$. List the elements of S. $S=\{2\}$.
2. (10 points) Use set builder notation to define the set of all rational numbers. $\mathbb{Q}=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}, b \neq 0\right\}$
3. (10 points) Let $A=\{1,\{1\}\}$. Construct $P(A)$. $P(A)=\{\emptyset,\{1\},\{\{1\}\},\{1,\{1\}\}\}$
4. (15 points) Compute the cardinality of each of the following sets.
i. $\emptyset ;|\emptyset|=0$
ii. $B=\left\{1,2,3,\{\alpha, \omega, 1\}, \beta, c,\{1\},\{\{\alpha, \beta, \gamma, \delta\}\}, \mathbb{Z}, \mathbb{Z}^{+}, \mathbb{R}\right\} ;|B|=11$
iii. $P(C)$ for $C=\{1,2,3, \ldots, 10\}$. $|P(C)|=2^{10}=1024$
5. (35 points) Let $S=\{\{1\},\{3\}, 2,3, \emptyset\}$. Answer the following without explanation.
i. Is $1 \subseteq S$? No.
ii. Is $\{2,3\} \subseteq S$? Yes.
iii. Is $\{1,3\} \in S$? No.
iv. Is $\emptyset \in S$? Yes.
v. Is $\{\emptyset\} \in S$? No.
vi. Is $\{3,\{2,3\}\} \subseteq S$? No.
vii. Is $(3,\{3\}) \in \bar{S} \times S$?Yes
6. Let A and B be sets.
i. (5 points) State the definition of A is a subset of $B . \quad A$ is a subset of B if every element in A is also an element in B.
ii. (5 points) What is the difference in meaning of $A \subseteq B$ versus $A \subset B$? In $A \subseteq B$, we allow for the possibility that $A=B$. In $A \subset B$. we know that $A \neq B$.
iii. (10 points) Give an example of two sets A and B such that $A \in B$ and $A \subseteq B$. Many examples exist. Let $A=\{1\}$ and $B=\{1,\{1\}\}$.
7. (10 points) Let A and B be nonempty sets such that $A \neq B$. Prove $A \times B \neq B \times A$. If $A \neq B$ then there exists (without loss of generality) $x \in A$ such that $x \notin B$. Let $y \in B$. Note that $(x, y) \in A \times B$ but since $x \notin B$ it is clear that $(x, y) \notin B \times A$.
