Math 3322 Test I
DeMaio Spring 2009
Name
Instructions. Show all your work. Credit cannot and will not be awarded for work not shown. Where appropriate, simplify all answers to a single decimal expansion.

Preliminaries

1. (5 points) List the members of the set $S=\{x \mid x$ is the square of an integer and $x<100\}$. $S=\{0,1,4,9,16,25,36,49,64,81\}$
2. (5 points) Compute $|A|$ for $A=\mathbb{Z}^{+} \cup \mathbb{Q}^{-}$. $|A|=\aleph_{0}$
3. (5 points) i. Give an example of infinite sets A and B such that $|A-B|=\aleph_{0}$. Let $A=\mathbb{Z}$ and $B=\mathbb{Z}^{+}$. (5 points) ii. Give an example of infinite sets A and B such that $|A-B|=0$. Let $A=\mathbb{Z}$ and $B=\mathbb{R}$.
4. (5 points) In a Venn diagram, shade $\overline{A \oplus B} \cap A$.

5. (5 points) Let A be the set of students who live within one mile of campus. Let B be the set of all students who walk to class. What does it mean to say Mary is a member of the set $\bar{A} \cap \bar{B}$? Mary lives more than one mile from campus and she does not walk to class.
6. (5 points) Compute $\left\lfloor 5.68+\left\lfloor\frac{1}{2}+\left\lceil\frac{1}{2}\right\rceil\right\rfloor+\frac{3}{4}\right\rfloor=7$.
7. (5 points).Let $A=\{x \mid x$ is the square of an integer and $x<100\}$ and $B=\{x \mid x$ is the cube of an integer and $x<100\}$. Find $A \cap B$.
$A \cap B=\{0,1,64\}$
8. (5 points) Compute $\prod_{k=1}^{100}(-1)^{k}=(-1)^{50}=1$.
9. (5 points) Compute $\sum_{i \in S} i^{2}$ for $S=\{-3,1,0,2\}$.
$\sum_{i \in S} i^{2}=(-3)^{2}+1^{2}+0^{2}+2^{2}=14$
10. (5 points) Compute $\sum_{i=1}^{278}\left(1+(-1)^{i}\right)=278$.
11. (5 points) Compute $\frac{100!}{95!5!}=75287520$.
12. (5 points) Find the first 10 terms of the sequence whose first two terms are 1 and 2 and each succeeding term is the sum of the previous two terms.
$1,2,3,5,8,13,21,34,55,89$
13. (5 points) Is $\lfloor j+k\rfloor=\lfloor j\rfloor+\lceil k\rceil$? If yes, prove it. If no, provide a counter example.

False! Let $j=k=1.2$. Now $\lfloor j+k\rfloor=\lfloor 2.4\rfloor=2$ while $\lfloor j\rfloor+\lceil k\rceil=\lfloor 1.2\rfloor+\lceil 1.2\rceil=3$.
14. (10 points) Let $f: \mathbb{Z} \rightarrow \mathbb{Z}^{+}$via $f(n)=\left\lceil\frac{n^{2}}{2}\right\rceil$.
a. Is $f(n)$ onto? Explain.

No. The integer 3 has no pre-image since $\left\lceil\frac{1^{2}}{2}\right\rceil=1,\left\lceil\frac{2^{2}}{2}\right\rceil=2,\left\lceil\frac{3^{2}}{2}\right\rceil=5$ and $f(n)$ is an increasing function on \mathbb{Z}^{+}and decreasing on \mathbb{Z}^{-}.
b. Is $f(n)$ one to one? Explain.

No since $f(-2)=f(2)$.
15. (10 points) Do one of the following two induction problems. Clearly indicate your selection.
a. Find and prove the correctness of a formula for $\sum_{i=1}^{n} 2 i$.

We need to conjecture and closed form function for $\sum_{i=1}^{n} 2 i$. So, let's plug and chug a few values until

n	$\sum_{i=1}^{n} 2 i$	$? ? ?$
1	$\sum_{i=1}^{1} 2 i=2$	$1 * 2$
we see a pattern.	2	$\sum_{i=1}^{2} 2 i=6$
	$2 * 3$	
3	$\sum_{i=1}^{3} 2 i=12$	$3 * 4$
4	$\sum_{i=1}^{4} 2 i=20$	$4 * 5$

So, it appears that $\sum_{i=1}^{n} 2 i=n(n+1)$. The above table serves as our base cases. So, assume that
$\sum_{i=1}^{n} 2 i=n(n+1)$ and show $\sum_{i=1}^{n+1} 2 i=(n+1)(n+2)$.
$\sum_{i=1}^{n+1} 2 i=\sum_{i=1}^{n} 2 i+2(n+1)=n(n+1)+2(n+1)=(n+1)(n+2)$. Put both parts together and
$\sum_{i=1}^{n} 2 i=n(n+1)$ for all $n \in \mathbb{Z}^{+}$.
b. Prove $\frac{5^{n+2}+9^{n}+10}{4}$ is an integer for all $n \in \mathbb{Z}^{+}$.

First note that $\frac{5^{n+2}+9^{n}+10}{4}=\frac{5^{1+2}+9^{1}+10}{4}=36 \in \mathbb{Z}$ and $S(1)$ is true.
Next assume $\frac{5^{n+2}+9^{n}+10}{4}$ is an integer and show $\frac{5^{n+1+2}+9^{n+1}+10}{4}$ is an integer.
$\frac{5^{n+1+2}+9^{n+1}+10}{4}=\frac{5^{n+3}+9^{n+1}+10}{4}=\frac{5 * 5^{n+2}+9 * 9^{n}+10}{4}=\frac{5^{n+2}+9^{n}+10}{4}+\frac{4 * 5^{n+2}}{4}+\frac{8 * 9^{n}}{4}=i n t+5^{n+2}+2 * 9^{n}=$
int. Put both parts together and $\frac{5^{n+2}+9^{n}+10}{4}$ is an integer for all $n \in \mathbb{Z}^{+}$.
16. (10 points) Use the strong form of induction to prove that any amount of postage $n \geq 30$ cents can be made using only 4 cent and 11 cent stamps.
Four base cases are required since the smallest denomination is 4 .
$30 \phi=2 * 11 \phi+2 * 4 \phi$
$31 \phi=11 \phi+5 * 4 \phi$
$32 \phi=8 * 4 \phi$
$33 \phi=3 * 11 \phi$
So, the statement is true for $S(30), S(31), S(32)$ and $S(33)$. Now assume $S(30), S(31), \ldots, S(n-1)$ and $S(n)$ are all true for $n \geq 33$. Show $S(n+1)$ is also true.
Well, $(n+1) \phi=4 \phi+(n-3) \phi$. By the inductive assumption we know that $(n-3) \phi$ of postage can be made using only 4 cent and 11 cent stamps since $n \geq 33$ which forces $n-3 \geq 30$ which is covered
by the base cases or subsequent inductive iterations. By parts 1 and 2 any amount of postage $n \geq 30$ cents can be made using only 4 cent and 11 cent stamps.
17. (5 points) Find the error in the following proof of this "theorem":
"Theorem: Every positive integer equals the next largest positive integer."
" Proof: Let $P(n)$ be the proposition ' $n=n+1$ '. To show that $P(k)=P(k+1)$, assume that $P(k)$ is true for some k, so that $k=k+1$. Add 1 to both sides of this equation to obtain $k+1=k+2$, which is $P(k+1)$. Therefore $P(k)=P(k+1)$ is true. Hence $P(n)$ is true for all positive integers n.". No base case exists!!!
18. (10 points) For sets A, B and C, show $\overline{A \cap B \cap C}=\bar{A} \cup \bar{B} \cup \bar{C}$.

First show $\overline{A \cap B \cap C} \subseteq \bar{A} \cup \bar{B} \cup \bar{C}$. Let $x \in \overline{A \cap B \cap C}$. Thus, $x \notin A \cap B \cap C$ and x is not an element of at least one of A, B or C. Thus, x is an element of at least one of \bar{A}, \bar{B} or \bar{C}. This shows $x \in \bar{A} \cup \bar{B} \cup \bar{C}$.
Next show $\bar{A} \cup \bar{B} \cup \bar{C} \subseteq \overline{A \cap B \cap C}$. Let $x \in \bar{A} \cup \bar{B} \cup \bar{C}$. So, x is not a member of at least one of A, B or C. Without loss of generality we can say $x \notin A$. Hence, $x \notin A \cap B \cap C$ which shows that $x \in \overline{A \cap B \cap C}$.
Put the two parts together and $\overline{A \cap B \cap C}=\bar{A} \cup \bar{B} \cup \bar{C}$.

