Name.

Instructions. Show all your work. Credit cannot and will not be awarded for work not shown. Where appropriate, simplify all answers to a single decimal expansion.

- 1. (30 points) Recall our 20 person club with 13 women and 7 men. How many ways can we i. elect a President and Vice-President; 20 * 19 = 380
 - ii. form a committee of three people (where each member has equal rank and power); $\binom{20}{3} = 1140$

iii. form a committee of four people and elect one of those four members to be the chairperson; $\binom{20}{4} * 4 =$ $19\,380$

- iv. form a committee of two people of opposite gender; 13 * 7 = 91
- v. form a committee of two people of the same gender; $\binom{13}{2} + \binom{7}{2} = 99$ or $\binom{20}{2} 91 = 99$ vi. form a committee of six people with at least one member of each gender? $\binom{20}{6} \binom{13}{6} \binom{7}{6} = 37037$
- 2. (15 points) How many ways can we rearrange the letters in the word
 - i. vampire; 7! = 5040
 - ii. werewolf; $\frac{8!}{2! * 2!} = 10\,080$ iii. mummy? $\frac{5!}{3!} = 20$
- 3. (10 points) How many positive integers not exceeding 10,000 are divisible by 6 or 15? $\left|\frac{10000}{6}\right| +$ $\left\lfloor \frac{10000}{15} \right\rfloor - \left\lfloor \frac{10000}{30} \right\rfloor = 1999$
- 4. (10 points) Use the Binomial Theorem to expand $(3x-2)^5$. You must show all the details of your work.

 $(3x-2)^5 =$ $\begin{array}{l} (3x)^{5} (-2)^{0} + \binom{5}{4} (3x)^{4} (-2)^{1} + \binom{5}{3} (3x)^{3} (-2)^{2} + \binom{5}{2} (3x)^{2} (-2)^{3} + \binom{5}{1} (3x)^{1} (-2)^{4} + \binom{5}{0} (3x)^{0} (-2)^{5} \\ = 243x^{5} - 5 * 81 * 2x^{4} + 10 * 27 * 4x^{3} - 10 * 9 * 8x^{2} + 5 * 3 * 16x - 32 \\ = 243x^{5} - 810x^{4} + 1080x^{3} - 720x^{2} + 240x - 32 \end{array}$

- 5. (10 points) John has 13 ordinary coins (cent, nickel, dime, quarter) in his pocket. At least how many of the same coin must John have? $\left[\frac{13}{4}\right] = 4$ At least how many quarters must John have? None.
- 6. (10 points) What is the minimum number of students, each of whom comes from one of the 50 states, who must be enrolled in a university to guarantee that there are at least 100 who come from the same state? 50 * 99 + 1 = 4951.
- 7. (15 points) Use induction to prove $3^n < n!$ for integers $n \ge 7$. First show S(7) is true: $3^7 = 2187 < 5040 = 7!$ Second assume $3^n < n!$ and show $3^{n+1} < (n+1)!$. So, $3^{n+1} = 3 * 3^n < 3 * n!$ by the inductive assumption. Since $n \ge 7$, n > 3 and $3 * n! < (n+1) * n! = 3 * 3^n < 3 * n!$ (n+1)!. Thus, $3^{n+1} < (n+1)!$.

8. (15 points) Chairs in a Row: the Couples version: In this version, we have a row of n chairs. People arrive in twos and want to sit next to their partner. For instance, a row of 4 chairs can be filled in the following 5 ways:

Find all the ways a row of 2 chairs can be filled with couples or be left empty?

Find all the ways a row of 3 chairs can be filled with couples or be left empty?

Conjecture and prove a formula for the number of ways a row of n chairs can be filled with couples or be left empty? Let S_n be the number of ways a row of n chairs can be filled with couples or be left empty. Given that $S_2 = 2$, $S_3 = 3$ and $S_4 = 5$ it would appear that $S_n = F_{n+1}$. So, is $S_n = S_{n-1} + S_{n-2}$? Partition all S_n rows into two sets, those that end in an empty chair and those that end in a person. There are S_{n-1} that end in an empty chair because you can add an empty chair on the end of every row of length n - 1. A row that ends in a person, actually ends in two people since couples sit together. This means there are S_{n-2} rows that end in a person since you can add a couple to the end of every row of length n - 2. Thus, $S_n = S_{n-1} + S_{n-2}$ and $S_n = F_{n+1}$.