Math 3322 Test II
DeMaio Spring 2012
Name
Instructions. Show all your work. Credit cannot and will not be awarded for work not shown. Where appropriate, simplify all answers to a single decimal expansion.

1. (15 points) Let $g_{0}=1$. Let $g_{n}=1+2^{g_{n-1}}$ for $n \geq 1$. Compute g_{1}, g_{2}, g_{3} and g_{4}.
$g_{1}=1+2^{g_{0}}=1+2^{1}=3$
$g_{2}=1+2^{g_{1}}=1+2^{3}=9$
$g_{3}=1+2^{g_{2}}=1+2^{9}=513$
$g_{4}=1+2^{g_{3}}=1+2^{513}$
2. (10 points) Give a recursive definition of the set of positive integer powers of 5 .

Let $P_{1}=5$. Let $P_{n}=5 P_{n-1}$ for $n \geq 2$.
3. (10 points) State the recursive definition of the Fibonacci sequence.

Let $f_{0}=0$ and $f_{1}=1$. For $n \geq 2, f_{n}=f_{n-1}+f_{n-2}$.
4. (10 points) Complete the table of Fibonacci numbers.

n	0	1	2	3	4	5	6	7	8	9	10
f_{n}	0	1	1	2	3	5	8	13	21	34	55

5. (15 points) Use induction to prove $\sum_{i=1}^{n} F_{i}^{2}=F_{n} F_{n+1}$ for the Fibonacci sequence and $n \in Z^{+}$.

First show that the base case of $n=1$ hold true.
R.H.S. $\sum_{i=1}^{1} F_{i}^{2}=F_{1}^{2}=1^{2}=1$ while L.H.S. $F_{1} F_{1+1}=F_{1} F_{2}=1 * 1=1$

Assume the statement is true for $n: \sum_{i=1}^{n} F_{i}^{2}=F_{n} F_{n+1}$. Show that the statement is true for the value $n+1: \sum_{i=1}^{n+1} F_{i}^{2}=F_{n+1} F_{n+2}$.
Note that $\sum_{i=1}^{n+1} F_{i}^{2}=\sum_{i=1}^{n} F_{i}^{2}+F_{n+1}^{2}$ which by the inductive hypothesis is $F_{n} F_{n+1}+F_{n+1}^{2}=F_{n+1}\left(F_{n}+\right.$ $\left.F_{n+1}\right)=F_{n+1} F_{n+2}$.
6. (15 points) Use induction to prove $3^{n}<n$! for integers $n \geq 7$.

Since $3^{7}=2187$ and $7!=5040$ the statement is true for $n=7$.
Assume $3^{n}<n$! and show $3^{n+1}<(n+1)$!.
Note that $3^{n+1}=3 * 3^{n}$. By the inductive hypothesis $3 * 3^{n}<3 * n$!. Since $3<7 \leq n<n+1$, we know that $3 * n!<(n+1) * n!=(n+1)$!. String these statements together and $3^{n+1}<(n+1)$!.
7. (15 points) Use induction to show $\frac{2^{3 n}-22}{7}$ is an integer for $n \in \mathbb{Z}^{+}$.

First, show $S(1)$ is true. Note, $\frac{2^{3 * 1}-22}{7}=-2$ which is an integer.
Assume $\frac{2^{3 n}-22}{7}$ is an integer and show $\frac{2^{3(n+1)}-22}{7}=\frac{2^{3 n+3}-22}{7}$ is an integer.
Well, $\frac{2^{3 n+3}-22}{7}=\frac{8 * 2^{3 n}-22}{7}=\frac{2^{3 n}-22}{7}+\frac{7 * 2^{3 n}}{7}=\frac{2^{3 n}-22}{7}+2^{3 n}$. The first part of the sum is an integer by the inductive hypothesis and $2^{3 n}$ is clearly an integer for all integers n. The sum of two integers is an integer. Thus, $\frac{2^{3 n+3}-22}{7}$ is an integer.
8. (20 points) Use the closed knight's tour of the 3×12 board of Figure 1 and the open 3×4 board of Figure 2 to prove the existence of a closed knight's tour for all $3 \times n$ boards where 4 divides n. Feel free to add whatever labels you like to the squares of the board.

Figure 1
Figure 2

