Name

Instructions. Show all your work. Credit cannot and will not be awarded for work not shown. Where appropriate, simplify all answers to a single decimal expansion.

- 1. (15 points) Let $g_0 = 1$. Let $g_n = 1 + 2^{g_{n-1}}$ for $n \ge 1$. Compute g_1, g_2, g_3 and g_4 . $g_1 = 1 + 2^{g_0} = 1 + 2^1 = 3$ $g_2 = 1 + 2^{g_1} = 1 + 2^3 = 9$ $g_3 = 1 + 2^{g_2} = 1 + 2^9 = 513$ $g_4 = 1 + 2^{g_3} = 1 + 2^{513}$
- 2. (10 points) Give a recursive definition of the set of positive integer powers of 5. Let $P_1 = 5$. Let $P_n = 5P_{n-1}$ for $n \ge 2$.
- 3. (10 points) State the recursive definition of the Fibonacci sequence. Let $f_0 = 0$ and $f_1 = 1$. For $n \ge 2$, $f_n = f_{n-1} + f_{n-2}$.
- 4. (10 points) Complete the table of Fibonacci numbers. n0 1 23 4 56 7 8 9 10 1 2 3 58 1 13 213455 f_n 0
- 5. (15 points) Use induction to prove $\sum_{i=1}^{n} F_i^2 = F_n F_{n+1}$ for the Fibonacci sequence and $n \in Z^+$. First show that the base case of n = 1 hold true. R.H.S. $\sum_{i=1}^{1} F_i^2 = F_1^2 = 1^2 = 1$ while L.H.S. $F_1 F_{1+1} = F_1 F_2 = 1 * 1 = 1$

Assume the statement is true for $n : \sum_{i=1}^{n} F_i^2 = F_n F_{n+1}$. Show that the statement is true for the value

$$n+1: \sum_{i=1}^{n+1} F_i^2 = F_{n+1}F_{n+2}.$$

Note that $\sum_{i=1}^{n+1} F_i^2 = \sum_{i=1}^n F_i^2 + F_{n+1}^2$ which by the inductive hypothesis is $F_n F_{n+1} + F_{n+1}^2 = F_{n+1}(F_n + F_{n+1}) = F_{n+1}F_{n+2}.$

- 6. (15 points) Use induction to prove $3^n < n!$ for integers $n \ge 7$. Since $3^7 = 2187$ and 7! = 5040 the statement is true for n = 7. Assume $3^n < n!$ and show $3^{n+1} < (n+1)!$. Note that $3^{n+1} = 3 * 3^n$. By the inductive hypothesis $3 * 3^n < 3 * n!$. Since $3 < 7 \le n < n+1$, we know that 3 * n! < (n+1) * n! = (n+1)!. String these statements together and $3^{n+1} < (n+1)!$.
- 7. (15 points) Use induction to show $\frac{2^{3n}-22}{7}$ is an integer for $n \in \mathbb{Z}^+$. First, show S(1) is true. Note, $\frac{2^{3*1}-22}{7} = -2$ which is an integer. Assume $\frac{2^{3n}-22}{7}$ is an integer and show $\frac{2^{3(n+1)}-22}{7} = \frac{2^{3n+3}-22}{7}$ is an integer. Well, $\frac{2^{3n+3}-22}{7} = \frac{8*2^{3n}-22}{7} = \frac{2^{3n}-22}{7} + \frac{7*2^{3n}}{7} = \frac{2^{3n}-22}{7} + 2^{3n}$. The first part of the sum is an integer by the inductive hypothesis and 2^{3n} is clearly an integer for all integers n. The sum of two integers is an integer. Thus, $\frac{2^{3n+3}-22}{7}$ is an integer.
- 8. (20 points) Use the closed knight's tour of the 3×12 board of Figure 1 and the open 3×4 board of Figure 2 to prove the existence of a closed knight's tour for all $3 \times n$ boards where 4 divides n. Feel free to add whatever labels you like to the squares of the board.

