Name
Instructions. Show all your work. Credit cannot and will not be awarded for work not shown. Where appropriate, simplify all answers to a single decimal expansion.

1. (10 points) A certain shirt is produced for both men and women. How many different shirts exist if i. the shirt comes in 3 sizes and 5 colors for both men and women; $2 * 3 * 5=30$
ii. the shirt comes in 3 sizes and 12 colors for women and 5 sizes and 6 colors for men? $3 * 12+5 * 6=$ 66
2. (15 points) How many ways can we rearrange the letters in the word
i. vampire; $7!=5040$
ii. werewolf; $\frac{8!}{2!\cdot 2!}=10080$
iii. mummy? $\frac{5!}{3!}=20$
3. (5 points) In an attempt to raise productivity the CANE corporation is scheduled to publicly flog its six least productive employees. In how many different orders can these six employees be flogged? $6!=$ 720
4. Let $S=\{0,1,2,3,4,5,6,7\}$.
i. (5 points) How many non-empty subsets does S have? $2^{8}-1=255$
ii. (5 points) How many subsets of S have no odd numbers as members? $2^{4}=16$
iii. (5 points) How many subsets of S have exactly 4 elements? $\binom{8}{4}=70$
iv. (5 points) How many subsets of S have an odd number elements? $\binom{8}{1}+\binom{8}{3}+\binom{8}{5}+\binom{8}{7}=128$
v. (5 points) How many four digit numbers can be made using the digits of S if a digit may be used repeatedly? Before you answer, ask yourself if 0 can be a leading digit. $7 * 8^{3}=3584$
vi. (10 points) How many even, four digit numbers can be made using the digits of S if a digit may be used only once? Be careful! There is a reason this part is worth 10 points. If we pick the last digit first, we run into a problem picking the first digit since we do not know if we used zero or not for the final digit. This needs to be broken into two cases; the last digit is zero or the last digit is not zero. We have $1 * 7 * 6 * 5+3 * 6 * 6 * 5=750$ different even four digit numbers.
5. (5 points) How many positive integers not exceeding 3000 are divisible by 12 or 15 ? $\left\lfloor\frac{3000}{12}\right\rfloor+\left\lfloor\frac{3000}{15}\right\rfloor-$ $\left\lfloor\frac{3000}{\operatorname{lcm}(12,15)}\right\rfloor=400$
6. (5 points) What is the minimum number of students, each of whom comes from one of the 50 states, who must be enrolled in a university to guarantee that there are at least 100 who come from the same state? $99 * 50+1=4951$
7. (5 points) At a university of 22,000 students, at least how many must share the same birthday (not including the year)? Don't forget leap years. $\left\lceil\frac{22000}{366}\right\rceil=61$
(5 points) How many must have the birthday September 19th? None.
8. (10 points) Use the Binomial Theorem to expand $(3 x-2)^{4}$ into standard polynomial form. You must show all the details of your use of the Binomial Theorem.
$\binom{4}{4}(3 x)^{4}(-2)^{0}+\binom{4}{3}(3 x)^{3}(-2)^{1}+\binom{4}{2}(3 x)^{2}(-2)^{2}+\binom{4}{1}(3 x)^{1}(-2)^{3}+\binom{4}{0}(3 x)^{0}(-2)^{4}=81 x^{4}-216 x^{3}+$ $216 x^{2}-96 x+16$
9. (15 points) Use the Binomial Theorem to find the coefficient of x^{8} in the expansion of each of the following. Once again, you must show all the details of your use of the Binomial Theorem.
i. $(2 x-3)^{10} ;\binom{10}{8}(2 x)^{8}(-3)^{2}=103680 x^{8}$
ii. $\left(5 x^{3}-6\right)^{9} ; 0$
iii. $\left(5 x^{4}-3\right)^{5}$. $\binom{5}{2}\left(5 x^{4}\right)^{2}(-3)^{3}=-6750 x^{8}$
10. (10 points) Use the Binomial Theorem to prove $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0$. Let $x=-1$ and $y=1$. Thus, $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=\sum_{k=0}^{n}(-1)^{k} * 1^{n-k}\binom{n}{k}=(-1+1)^{n}=0^{n}=0$.
