Math 3322 Test II
DeMaio Fall 2012
Name
Instructions. Show all your work. Credit cannot and will not be awarded for work not shown. Where appropriate, simplify all answers to a single decimal expansion.

1. (30 points) In the questions below pick a sequence of five cards (without replacement) and arrange them face up in a sequence from left to right. Recall that there are four suits: clubs, diamonds, hearts spades and 13 ranks: A, $2,3,4,5,6,7,8,9,10, J, Q, K$. There is exactly one card of each rank and suit for a total of 52 cards.
i. How many sequences are possible? $52 * 51 * 50 * 49 * 48=311875200$
ii. How many of these sequences have no repeated ranks? $52 * 48 * 44 * 40 * 36=158146560$
iii. How many of these sequences begin with a King or end in an Ace? $4 * 51 * 50 * 49 * 48+4 * 51 *$ $50 * 49 * 48-4 * 4 * 50 * 49 * 48=46099200$
iv. How many of these sequences have no repeated suits? 0
v. How many of these sequences begin with a King or a club? $16 * 51 * 50 * 49 * 48=95961600$
vi. How many sequences have no clubs? $39 * 38 * 37 * 36 * 35=69090840$
2. (10 points) Write a recursive definition of the positive multiples of 7 . Let $S_{n}=S_{n-1}+7$ for $n \geq 2$ where $S_{1}=7$.
3. (10 points) Let $f(0)=3$ and $f(n)=\left\lfloor\frac{14}{f(n-1)}\right\rfloor$ for $n \geq 1$. Compute the following.
i. $f(1)=\left\lfloor\frac{14}{3}\right\rfloor=4$
ii. $f(2)=\left\lfloor\frac{14}{4}\right\rfloor=3$
iii. $f(3)=\left\lfloor\frac{14}{3}\right\rfloor=4$
iv. $f(4)=\left\lfloor\frac{14}{4}\right\rfloor=3$
4. (15 points) Prove that any amount of postage ≥ 18 cents can be made using only 4 cent and/or 7 cent stamps.
$18=2 * 7+4$
$19=7+3 * 4$
$20=5 * 4$
$21=3 * 7$
Assume that any amount of postage $18,19,20,21, \ldots, n$ cents for $n \geq 21$ can be made using only 4 cent and/or 7 cent stamps. Show how to make $n+1$ cents of postage.
$n+1=4+n-3$
Note that $n-3 \leq n$ and since $n \geq 21$ then $n-3 \geq 18$.
Thus, by inductive assumption we can make $n-3$ cents worth of postage using only 4 cent and/or 7 cent stamps. Add a 4 cent stamp to that solution and we've made $n+1$ cents of postage using only 4 cent and/or 7 cent stamps.
5. (15 points) Prove that the 4×4 board does not admit a closed knight's tour. You may not reference Schwenk's Theorem!

6. (15 points) Use the fact that the $\operatorname{gcd}\left(F_{n}, F_{n+1}\right)=1$ to prove $\operatorname{gcd}\left(F_{n}, F_{n+2}\right)=1$. Assume $\operatorname{gcd}\left(F_{n}, F_{n+2}\right)=d>1$ for some n. Since $F_{n+2}=F_{n}+F_{n+1}$ then $F_{n+1}=F_{n+2}-F_{n}$. Since
$\operatorname{gcd}\left(F_{n}, F_{n+2}\right)=d$ then d divides both F_{n} and F_{n+2}. Thus, d divides their difference, F_{n+1}. However, now d divides both F_{n} and F_{n+1} so $1=\operatorname{gcd}\left(F_{n}, F_{n+2}\right) \geq d>1$ which is a problem. Hence, the assumption is wrong and $\operatorname{gcd}\left(F_{n}, F_{n+2}\right)=1$.
7. (15 points) Determine a formula for $\sum_{i=1}^{n} F_{2 i}$. Use induction to prove the correctness of your conjecture. $F_{2}=1$
$F_{2}+F_{4}=1+3=4$
$F_{2}+F_{4}+F_{6}=1+3+8=12$.
Conjecture: $\sum_{i=1}^{n} F_{2 i}=F_{2 n+1}-1$.
Assume the statement is true for $n: \sum_{i=1}^{n} F_{2 i}=F_{2 n+1}-1$. Show that the statement is true for the value $n+1: \sum_{i=1}^{n+1} F_{2 i}=F_{2(n+1)+1}-1=F_{2 n+3}-1$.
$\sum_{i=1}^{n+1} F_{2 i}=\sum_{i=1}^{n} F_{2 i}+F_{2 n+2}$ which by the inductive hypothesis is $F_{2 n+1}-1+F_{2 n+2}=F_{2 n+3}-1$.
