## Name

Instructions. Show all your work. Credit cannot and will not be awarded for work not shown. Where appropriate, simplify all answers to a single decimal expansion.

- 1. (30 points) In the questions below pick a sequence of five cards (without replacement) and arrange them face up in a sequence from left to right. Recall that there are four suits: clubs, diamonds, hearts spades and 13 ranks: A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K. There is exactly one card of each rank and suit for a total of 52 cards.
  - i. How many sequences are possible? 52 \* 51 \* 50 \* 49 \* 48 = 311875200
  - ii. How many of these sequences have no repeated ranks? 52 \* 48 \* 44 \* 40 \* 36 = 158146560

iii. How many of these sequences begin with a King or end in an Ace?  $4 * 51 * 50 * 49 * 48 + 4 * 51 * 50 * 49 * 48 - 4 * 4 * 50 * 49 * 48 = 46\,099\,200$ 

- iv. How many of these sequences have no repeated suits? 0
- v. How many of these sequences begin with a King or a club?16 \* 51 \* 50 \* 49 \* 48 = 95961600
- vi. How many sequences have no clubs? 39 \* 38 \* 37 \* 36 \* 35 = 69090840
- 2. (10 points) Write a recursive definition of the positive multiples of 7. Let  $S_n = S_{n-1} + 7$  for  $n \ge 2$  where  $S_1 = 7$ .
- 3. (10 points) Let f(0) = 3 and  $f(n) = \left\lfloor \frac{14}{f(n-1)} \right\rfloor$  for  $n \ge 1$ . Compute the following.
  - i.  $f(1) = \lfloor \frac{14}{3} \rfloor = 4$ ii.  $f(2) = \lfloor \frac{14}{4} \rfloor = 3$ iii.  $f(3) = \lfloor \frac{14}{3} \rfloor = 4$ iv.  $f(4) = \lfloor \frac{14}{4} \rfloor = 3$
- 4. (15 points) Prove that any amount of postage  $\geq 18$  cents can be made using only 4 cent and/or 7 cent stamps.
  - 18 = 2 \* 7 + 4
  - 19 = 7 + 3 \* 4
  - 20 = 5 \* 4
  - 21 = 3 \* 7

Assume that any amount of postage 18, 19, 20, 21, ..., n cents for  $n \ge 21$  can be made using only 4 cent and/or 7 cent stamps. Show how to make n + 1 cents of postage.

$$n+1 = 4+n-3$$

Note that  $n-3 \le n$  and since  $n \ge 21$  then  $n-3 \ge 18$ .

Thus, by inductive assumption we can make n-3 cents worth of postage using only 4 cent and/or 7 cent stamps. Add a 4 cent stamp to that solution and we've made n+1 cents of postage using only 4 cent and/or 7 cent stamps.

5. (15 points) Prove that the 4 × 4 board does not admit a closed knight's tour. You may not reference Schwenk's Theorem!



6. (15 points) Use the fact that the  $gcd(F_n, F_{n+1}) = 1$  to prove  $gcd(F_n, F_{n+2}) = 1$ . Assume  $gcd(F_n, F_{n+2}) = d > 1$  for some *n*. Since  $F_{n+2} = F_n + F_{n+1}$  then  $F_{n+1} = F_{n+2} - F_n$ . Since

 $gcd(F_n, F_{n+2}) = d$  then d divides both  $F_n$  and  $F_{n+2}$ . Thus, d divides their difference,  $F_{n+1}$ . However, now d divides both  $F_n$  and  $F_{n+1}$  so  $1 = gcd(F_n, F_{n+2}) \ge d > 1$  which is a problem. Hence, the assumption is wrong and  $gcd(F_n, F_{n+2}) = 1$ .

- 7. (15 points) Determine a formula for  $\sum_{i=1}^{n} F_{2i}$ . Use induction to prove the correctness of your conjecture.
  - $$\begin{split} F_2 &= 1 \\ F_2 + F_4 &= 1 + 3 = 4 \\ F_2 + F_4 + F_6 &= 1 + 3 + 8 = 12. \\ \text{Conjecture:} & \sum_{i=1}^n F_{2i} = F_{2n+1} 1. \end{split}$$

Assume the statement is true for  $n : \sum_{i=1}^{n} F_{2i} = F_{2n+1} - 1$ . Show that the statement is true for the value

$$n+1: \sum_{i=1}^{n+1} F_{2i} = F_{2(n+1)+1} - 1 = F_{2n+3} - 1.$$
  
$$\sum_{i=1}^{n+1} F_{2i} = \sum_{i=1}^{n} F_{2i} + F_{2n+2} \text{ which by the inductive hypothesis is } F_{2n+1} - 1 + F_{2n+2} = F_{2n+3} - 1.$$