Math 3322 Test II
DeMaio Spring 2011
Name
Instructions. Show all your work. Credit cannot and will not be awarded for work not shown. Where appropriate, simplify all answers to a single decimal expansion.

1. (35 points) Compute the following.
i. $\left\lceil\left(\frac{1}{33}\right)^{250}\right\rceil=1$
ii. $\lceil\pi\rceil-\lfloor e\rfloor=2$
iii. $\frac{250!}{3!247!}=\frac{250 * 249 * 248}{6}=2573000$
iv. $\sum_{i=1}^{350} i=61425$
v. $\sum_{i=1}^{200} i^{2}=2686700$
vi. $\sum_{i=300}^{500} i=\sum_{i=1}^{500} i-\sum_{i=1}^{299} i=80400$
vii. $\prod_{k=1}^{100} k^{\left\lfloor\frac{1}{k^{2}}\right\rfloor}=1$
2. (10 points) Let $A=\{1,3,5,7,9\}, B=\{5,7,13\}$ and $U=\{1,2,3, \ldots, 15\}$. Compute the following.
i. $A \cup B=\{1,3,5,7,9,13\}$
ii. $A \cap B=\{5,7\}$
iii. $A \oplus B=\{1,3,9,13\}$
iv. $\bar{A} \cap \bar{B}=\{2,4,6,8,10,11,12,14,15\}$
3. (10 points) Find the first 10 terms of the sequence whose $n^{t h}$ term is the smallest integer k such that $k^{2} \geq n$.

n	1	2	3	4	5	6	7	8	9	10
a_{n}	1	2	2	2	3	3	3	3	3	4

4. (10 points) Show that the union of three infinitely countable sets is countable.

Let A, B, C all have cardinality \aleph_{0}. Since A, B, C are all countable infinite we can write their elements in order. So, $A=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}, B=\left\{b_{1}, b_{2}, b_{3}, \ldots\right\}$ and $C=\left\{c_{1}, c_{2}, c_{3}, \ldots\right\}$. It is now easy to write all the elements of $A \cup B \cup C$ in order as $\left\{a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2}, a_{3}, b_{3}, c_{3}, \ldots\right\}$.
5. (15 points) Someone claims that $r_{1}, r_{2}, r_{3}, \ldots$ is an ordered listing of all reals in $(0,1)$. Produce $r \in(0,1)$ such that $r \neq r_{i}$ for all $i \in \mathbb{Z}^{+}$.
See class notes.
6. (10 points) Let f be the function that assigns to each bit string, three times the number of 0 's in the bit string. State the domain and range of f.
The domain is the collection of all bit strings. The range is $\{0,3,6,9,12, \ldots\}$.
7. (10 points) True or False? $\lfloor x\lceil y\rceil\rfloor=x y$ for $x, y \in \mathbb{Z}$. If true, prove it. If false, provide a counter example.
This is true since x and y are integers. Both floor and ceiling leave integers unchanged.
8. (5 points) Let A be the set of students who live within one mile of campus and let B be the set of students who walk to campus. Describe the students in the set $A-B$.
The set $A-B$ consists of the students who live within one mile of campus but do not walk to campus.
9. (10 points) Give an example of a function $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{-}$that is neither one-to-one nor onto. Explain why your example is correct. The constant function $f(n)=-5$ is one possible example. Since every value is mapped to $-5, f(n)$ is obviously not one-to-one. Since -5 is not the only element in the codomain, $f(n)$ is just as clearly not onto.

