Math 3322 Test III
DeMaio Spring 2011
Name
Instructions. Show all your work. Credit cannot and will not be awarded for work not shown. Where appropriate, simplify all answers to a single decimal expansion.

1. (45 points) In the questions below suppose that a "word" is any string of five uppercase letters of the alphabet, with repeated letters allowed. Furthermore, always classify the pesky "sometimes $Y^{\prime \prime}$ as a consonant.
i. How many words exist? $26^{5}=11881376$
ii. How many words end with the letter $B ? 26^{4}=456976$
iii. How many words begin with A and end with $B ? 26^{3}=17576$
iv. How many words begin with A or $B ? 2 * 26^{4}=913952$
v. How many words begin with A or end with $B ? 26^{4}+26^{4}-26^{3}=896376$
vi. How many words have no vowels? $21^{5}=4084101$
vii. How many words have exactly one vowel? $5 * 5 * 21^{4}=4862025$
viii. How many words have at least one vowel? $26^{5}-21^{5}=7797275$
ix. How many words have exactly two vowels? $\binom{5}{2} * 5^{2} * 21^{3}=2315250$
2. (5 points) Consider a twenty person club. How many different ways can a President, Vice-President and Treasurer be elected? $20 * 19 * 18=6840$
3. (5 points) How many functions are there from a domain with 7 elements to a codomain with 10 elements? $10^{7}=10000000$
4. (5 points) How many one-to-one functions are there from a domain with 7 elements to a codomain with 10 elements? $\frac{10!}{(10-7)!}=604800$
5. (5 points each) Let $S=\{1,2,3,4,5,6,7\}$.
(a) How many non-empty subsets does S have? $2^{7}-1=127$
(b) How many subsets of S have no odd numbers as members? $2^{3}=8$
(c) How many subsets of S have exactly 4 elements? $\binom{7}{4}=35$
(d) How many subsets of S have at least 5 elements? $\binom{7}{5}+\binom{7}{6}+\binom{7}{7}=29$
(e) How many even four digit numbers can be made using the digits of S if a digit may be used only once? Pick the last digit first and then the first, second and third digits. This can be done in $3 * 6 * 5 * 4=360$ ways.
6. (10 points) Use sophisticated counting techniques to determine how many positive integers not exceeding 1,000 are divisible by 9 or $12 ?\left\lfloor\frac{1000}{9}\right\rfloor+\left\lfloor\frac{1000}{12}\right\rfloor-\left\lfloor\frac{1000}{\lfloor\operatorname{cm}(9,12)}\right\rfloor=167$
7. (10 points) Use the Pigeonhole Principle to show that if seven distinct numbers are selected from $\{1,2, \ldots, 11\}$, then some two of these numbers sum to 12 . For an extra 5 bonus points instead show that if $n+1$ numbers are selected from $\{1,2, \ldots, 2 n-1\}$, then some two of these numbers sum to $2 n$. In either case you must carefully describe the pigeonholes and how the pigeons are placed.
The numbers $\{1,2, \ldots, 2 n-1\}$ are the $2 n-1$ pigeons. The n pigeonholes are labeled with two numbers on each pigeonhole as $\{1,2 n-1\},\{2,2 n-1\},\{3,2 n-3\}, \ldots,\{n-1, n+1\}$ and a last pigeonhole labeled only as $\{n\}$. Now select $n+1$ entries from $\{1,2, \ldots, 2 n-1\}$ and place the numbers into their pigeonholes according to label. You've placed $n+1$ pigeons into n pigeonholes and at least one pigeonhole contains at least two pigeons. Since the selected numbers are distinct we know that some pigeonhole other than than the one labeled $\{n\}$ has two pigeons of distinct values. By the way we labeled the pigeonholes, we know that the sum of those two numbers is $2 n$.
8. (10 points) Use the binomial coefficient to show why it is necessary to define $0!=1$. Combinatorially we know that $\binom{n}{n}=1$ since there is only one way to select the entire set from itself. Plugging into the formula for the binomial coefficient we see that $1=\frac{n!}{n!0!}$. Canceling the $n!$ s reveals that $1=\frac{1}{0!}$. Solving for 0 ! gives us that $0!=1$.
