Math 3322 Test IV
DeMaio Spring 2011
Name
Instructions. Show all your work. Credit cannot and will not be awarded for work not shown. Where appropriate, simplify all answers to a single decimal expansion.

1. (15 points) Use the binomial theorem to expand $(3 x-2)^{4}$ into polynomial form. You must show all details.
$(3 x-2)^{4}=\binom{4}{4}(3 x)^{4}(-2)^{4-4}+\binom{4}{3}(3 x)^{3}(-2)^{4-3}+\binom{4}{2}(3 x)^{2}(-2)^{4-2}+$ $\binom{4}{1}(3 x)^{1}(-2)^{4-1}+\binom{4}{0}(3 x)^{0}(-2)^{4-0}=81 x^{4}-216 x^{3}+216 x^{2}-96 x+16$
2. (10 points each) Find the coefficient of x^{10} in the expansion of
(a) $(2 x-4)^{15} ;\binom{15}{10}(2 x)^{10}(-4)^{5}=-3148873728 x^{10}$
(b) $\left(4 x^{3}-3\right)^{12}$; The coefficient is 0 since no integer power of $4 x^{3}$ will yield x^{10}.
(c) $\left(8 x^{5}-3\right)^{5} \cdot\binom{5}{2}\left(8 x^{5}\right)^{2}(-3)^{3}=-17280 x^{10}$
3. (15 points) Prove $\sum_{i=0}^{n}\binom{n}{i}=2^{n}$ for $n \in Z^{+}$.

The Binomial Theorem states $\sum_{i=0}^{n} x^{i} y^{n-i}\binom{n}{i}=(x+y)^{n}$. Let $x=y=1$ and we see that $\sum_{i=0}^{n}\binom{n}{i}=\sum_{i=0}^{n} 1^{i} 1^{n-i}\binom{n}{i}=(1+1)^{n}=2^{n}$.
4. (15 points) Compute $\sum_{i=0}^{20} 2^{i} 3^{20-i}\binom{20}{i}$.

The Binomial Theorem states $\sum_{i=0}^{n} x^{i} y^{n-i}\binom{n}{i}=(x+y)^{n}$. Let $n=20, x=2$ and $y=3$, and we see that $\sum_{i=0}^{20} 2^{i} 3^{20-i}\binom{20}{i}=5^{20}=95367431640625$.
5. (15 points) Use a combinatorial proof to show $\binom{n}{k}=\binom{n}{n-k}$ for all $n, k \in$ Z^{+}where $k \leq n$.
Selecting a subset of k items from n items is equivalent to selecting $n-k$ items to exclude from the subset.
6. (20 points) Use a combinatorial proof to show $\binom{4 n}{2}=4\binom{n}{2}+6 n^{2}$ for $n \in Z^{+}$.
Let $A=\{1,2, \ldots, n, \ldots, 4 n\}$ and let S be the collection of all subsets of A of size 2. On the one hand, it is clear that $|S|=\binom{4 n}{2}$. One the other hand partition A into four disjoint subsets. Let $B=\{1,2, \ldots n\}$, $C=\{n+1, n+2, \ldots 2 n\}, D=\{2 n+1,2 n+2, \ldots 3 n\}$ and $E=\{3 n+1, \ldots, 4 n\}$. We can select a set of two elements of A by selecting two elements from one of the sets B, C, D, or E. This can be done in $4\binom{n}{2}$ ways. Or we can select two of the sets B, C, D, or E and select one element from each.

This can be done in $\binom{4}{2} n^{2}=6 n^{2}$ ways. Thus, $|S|=4\binom{n}{2}+6 n^{2}$. We've counted the same set S in two different ways and $\binom{4 n}{2}=4\binom{n}{2}+6 n^{2}$ for $n \in Z^{+}$.

