Math 3322 Test I
DeMaio Fall 2008
Name
Instructions. Show all your work. Credit cannot and will not be awarded for work not shown. Where appropriate, simplify all answers to a single decimal expansion.

Preliminaries

1. (5 points) List the members of the set $S=\left\{x \mid x \in Z^{+}, 50 \leq x^{3} \leq 150\right\}$.
2. (5 points) Construct $P(A)$ for $A=\{*, a, 3\}$.
3. (5 points) Compute $|P(A)|$ for $A=\{2,3,5,7,11,13,17,19,23,29,31\}$.
4. (5 points) Give an example of sets A and B such that B is a proper subset of A and $|A|=|B|$.
5. (5 points) In a Venn diagram, shade $\overline{A \oplus B}$.
6. (5 points) Let A be the set of students who live within one mile of campus. Let B be the set of all students who walk to class. What does it mean to say Mary is a member of the set $\bar{A} \cap B$?
7. (5 points) Compute $\left\lfloor\frac{1}{2}+\left\lfloor\frac{1}{2}+\left\lceil\frac{1}{2}\right\rceil\right\rfloor\right\rfloor$.
8. (5 points) Find the domain and range of the function that assigns to each positive integer its last digit.
9. (5 points) Give an example of a function $f: Z \rightarrow Z^{+}$that is neither one-to-one nor onto.
10. (5 points) Compute $\sum_{i=50}^{175} i$.
11. (5 points) Compute $\prod_{-533}^{278}\left(i^{3}-1\right)$.
12. (5 points) Compute $\frac{100!}{95!5!}$.

Problems

13. (10 points) True or False? If true, prove it. If false, provide a counter-example. $(j+k)!=j!+k!$
14. (10 points) Prove $\left|Q^{+}\right|=\aleph_{0}$.
15. (10 points) Use mathematical induction to prove $\sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}$ for all $n \in Z^{+}$.
16. (10 points) Use induction to prove 3 divides $n^{3}+2 n-15$ for all $n \in Z^{+}$.
17. (10 points) Find the error in the following proof of this "theorem":
"Theorem: Every positive integer equals the next largest positive integer."
" Proof: Let $P(n)$ be the proposition ' $n=n+1$ '. To show that $P(k)=P(k+1)$, assume that $P(k)$ is true for some k, so that $k=k+1$. Add 1 to both sides of this equation to obtain $k+1=k+2$, which is $P(k+1)$. Therefore $P(k)=P(k+1)$ is true. Hence $P(n)$ is true for all positive integers n.".
18. (10 points) For sets A, B and C, let $A \oplus C=B \oplus C$. Use contradiction to prove $A=B$.
