Name_

Instructions. Show all your work. Credit cannot and will not be awarded for work not shown. Where appropriate, simplify all answers to a single decimal expansion.

Preliminaries

- 1. (5 points) List the members of the set $S = \{x | x \in Z^+, 50 \le x^3 \le 150\}$. $S = \{4, 5\}$
- 2. Quiz 1 # 3 (5 points) Construct P(A) for $A = \{*, a, 3\}$. $P(A) = \{\emptyset, \{*\}, \{a\}, \{3\}, \{*, a\}, \{*, 3\}, \{a, 3\}, \{*, a, 3\}\}$
- 3. Quiz 1 # 4 (5 points) Compute |P(A)| for $A = \{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31\}$. $|P(A)| = 2^{11} = 2048$
- 4. (5 points) Give an example of sets A and B such that B is a proper subset of A and |A| = |B|. Let A = Z and let $B = Z^+$.
- 5. (5 points) In a Venn diagram, shade $\overline{A \oplus B}$.

- 6. HW 2.2 #1 (5 points) Let A be the set of students who live within one mile of campus. Let B be the set of all students who walk to class. What does it mean to say Mary is a member of the set $\overline{A} \cap B$? Mary walks more than one mile to her classes on campus.
- 7. *HW* 2.3 #8h (5 points) Compute $\left\lfloor \frac{1}{2} + \left\lfloor \frac{1}{2} + \left\lfloor \frac{1}{2} \right\rfloor \right\rfloor$. $\left\lfloor \frac{1}{2} + \left\lfloor \frac{1}{2} + \left\lceil \frac{1}{2} \right\rceil \right\rfloor \right\rfloor = 1$
- 8. HW 2.3 #4a (5 points) Find the domain and range of the function that assigns to each positive integer its last digit.

The domain is Z^+ . The range is $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$.

- 9. HW 2.3 #16d (5 points) Give an example of a function $f : Z \to Z^+$ that is neither one-to-one nor onto. Let $f(n) = n^2$.
- 10. *HW* 2.4 #23 (5 points) Compute $\sum_{i=50}^{175} i$. $\sum_{i=50}^{175} i = \sum_{i=1}^{175} i - \sum_{i=1}^{49} i = \frac{175 \times 176}{2} - \frac{49 \times 50}{2} = 14\,175.$
- 11. *Quiz* 2 # 1*d* (5 points) Compute $\prod_{-533}^{278} (i^3 1)$.

Since 1 is an integer between -533 and 278 the product contains the term $1^3 - 1 = 0$ and is 0.

- 12. (5 points) Compute $\frac{100!}{95!5!}$. $\frac{100!}{95!5!} = \frac{100*99*98*97*96}{120} = 75\,287\,520.$ Problems
- 13. (10 points) True or False? If true, prove it. If false, provide a counter-example. (j+k)! = j! + k!False! Let k = j = 2. Then (j+k)! = (2+2)! = 41 = 24 while 2! + 2! = 2 + 2 = 4.

14. Class Notes (10 points) Prove $|Q^+| = \aleph_0$.

	1	2	3	4	5	б	7	8	
1	$\frac{1}{1}$	$\frac{1}{2}$	$\rightarrow \frac{1}{3}$	$\frac{1}{4}$ -	$\rightarrow \frac{1}{5}$	$\frac{1}{6}$ -	$\rightarrow \frac{1}{7}$	1 8	
2	$\frac{2}{1}$	2/2/	$\frac{2}{3}$	2 K	$\frac{2}{5}$	NG K	$\frac{2}{7}$	<u>2</u> 8	
3	$\frac{3}{1}$	$\frac{3}{2}$	3	$\frac{3}{4}$	3 K	$\frac{3}{6}$	$\frac{3}{7}$	3	
4	4	*	$\frac{4}{3}$	*** K	<u>4</u> 5	$\frac{4}{6}$	$\frac{4}{7}$	4 8	
5	$\frac{5}{1}$	<u>5</u> 2	$\frac{5}{3}$	<u>5</u> 4	<u>5</u> 5	<u>5</u> 6	$\frac{5}{7}$	5	
б	$\frac{6}{1}$	\$ <u>*</u>	6 3 3	<u>6</u> 4	<u>6</u> 5	<u>6</u>	$\frac{6}{7}$	6	
7	$\frac{7}{1}$	$\frac{7}{2}$	$\frac{7}{3}$	$\frac{7}{4}$	$\frac{7}{5}$	$\frac{7}{6}$	$\frac{7}{7}$	7 8	
8	8	8/2	8	8 4	8	8	87	8	
÷	:								

from http://www.homeschoolmath.net/teaching/rational-numbers-countable.php.

15. *HW* 4.1 #4 (10 points) Use mathematical induction to prove $\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$ for all $n \in Z^+$. I. Show that S(1) is true. L.H.S. $\sum_{i=1}^{1} i^3 = 1^3 = 1$. R.H.S. $\frac{1^2(1+1)^2}{4} = \frac{4}{4} = 1$. Thus, S(1) is true. II. Assume $\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$ and show $\sum_{i=1}^{n+1} i^3 = \frac{(n+1)^2(n+2)^2}{4}$. $\sum_{i=1}^{n+1} i^3 = \sum_{i=1}^{n} i^3 + (n+1)^3$ which by the inductive hypothesis is $\frac{n^2(n+1)^2}{4} + (n+1)^3 = \frac{n^2(n+1)^2}{4} + \frac{4(n+1)^3}{4} = \frac{(n+1)^2[n^2+4(n+1)]}{4} = \frac{(n+1)^2[n^2+4n+4]}{4} = \frac{(n+1)^2(n+2)^2}{4}$.

- 16. (10 points) Use induction to prove 3 divides $n^3 + 2n 15$ for all $n \in Z^+$. I. $\frac{1^3 + 2*1 - 15}{3} = \frac{1 + 2 - 15}{3} = \frac{-12}{3} = -4 \in Z$. II. Assume $\frac{n^3 + 2n - 15}{3} \in Z$. Show $\frac{(n+1)^3 + 2(n+1) - 15}{3} \in Z$ $\frac{(n+1)^3 + 2(n+1) - 15}{3} = \frac{(n^3 + 3n^2 + 3n + 1) + (2n+2) - 15}{3} = \frac{n^3 + 2n - 15}{3} + \frac{3n^2 + 3n + 3}{3}$ which by the inductive assumption is $int + \frac{3n^2 + 3n + 3}{3} = int + \frac{3(n^2 + n + 1)}{3} = int + n^2 + n + 1 = int$.
- 17. (10 points) Find the error in the following proof of this "theorem":

"Theorem: Every positive integer equals the next largest positive integer."

"Proof: Let P(n) be the proposition 'n = n + 1'. To show that P(k) = P(k+1), assume that P(k) is true for some k, so that k = k + 1. Add 1 to both sides of this equation to obtain k + 1 = k + 2, which is P(k+1). Therefore P(k) = P(k+1) is true. Hence P(n) is true for all positive integers n.". There is no base case to show that 1 = 2.

18. HW 2.2 #41 (10 points) For sets A, B and C, let $A \oplus C = B \oplus C$. Use contradiction to prove A = B. Assume $A \neq B$. Without loss of generality we can say that if $A \neq B$, then there exists $x \in A$ such that $x \notin B$. We now have two cases.

1. If $x \in C$, then $x \notin A \oplus C$ but $x \in B \oplus C$. This is a contradiction since $A \oplus C = B \oplus C$. 2. If $x \notin C$, then $x \in A \oplus C$ but $x \notin B \oplus C$. This is a contradiction since $A \oplus C = B \oplus C$.

In either case a contradiction arises. Thus, the assumption is wrong and A = B.