Math 3322 Test I
DeMaio Fall 2008
Name
Instructions. Show all your work. Credit cannot and will not be awarded for work not shown. Where appropriate, simplify all answers to a single decimal expansion.

Preliminaries

1. (5 points) List the members of the set $S=\left\{x \mid x \in Z^{+}, 50 \leq x^{3} \leq 150\right\}$. $S=\{4,5\}$
2. Quiz $1 \# 3$ (5 points) Construct $P(A)$ for $A=\{*, a, 3\}$. $P(A)=\{\emptyset,\{*\},\{a\},\{3\},\{*, a\},\{*, 3\},\{a, 3\},\{*, a, 3\}\}$
3. Quiz $1 \# 4$ (5 points) Compute $|P(A)|$ for $A=\{2,3,5,7,11,13,17,19,23,29,31\}$.
$|P(A)|=2^{11}=2048$
4. (5 points) Give an example of sets A and B such that B is a proper subset of A and $|A|=|B|$. Let $A=Z$ and let $B=Z^{+}$.
5. (5 points) In a Venn diagram, shade $\overline{A \oplus B}$.

6. HW $2.2 \# 1$ (5 points) Let A be the set of students who live within one mile of campus. Let B be the set of all students who walk to class. What does it mean to say Mary is a member of the set $\bar{A} \cap B$? Mary walks more than one mile to her classes on campus.
7. HW $2.3 \# 8 h$ (5 points) Compute $\left\lfloor\frac{1}{2}+\left\lfloor\frac{1}{2}+\left\lceil\frac{1}{2}\right\rceil\right\rfloor\right\rfloor$.
$\left\lfloor\frac{1}{2}+\left\lfloor\frac{1}{2}+\left\lceil\frac{1}{2}\right\rceil\right\rfloor\right\rfloor=1$
8. HW 2.3 \#4a (5 points) Find the domain and range of the function that assigns to each positive integer its last digit.
The domain is Z^{+}. The range is $\{0,1,2,3,4,5,6,7,8,9\}$.
9. HW 2.3 \#16d (5 points) Give an example of a function $f: Z \rightarrow Z^{+}$that is neither one-to-one nor onto.
Let $f(n)=n^{2}$.
10. HW $2.4 \# 23$ (5 points) Compute $\sum_{i=50}^{175} i$.
$\sum_{i=50}^{175} i=\sum_{i=1}^{175} i-\sum_{i=1}^{49} i=\frac{175 * 176}{2}-\frac{49 * 50}{2}=14175$.
11. Quiz 2 \# 1d (5 points) Compute $\prod_{-533}^{278}\left(i^{3}-1\right)$.

Since 1 is an integer between -533 and 278 the product contains the term $1^{3}-1=0$ and is 0 .
12. (5 points) Compute $\frac{100!}{95!5!}$.
$\frac{100!}{95!5!}=\frac{100 * 99 * 98 * 97 * 96}{120}=75287520$.

Problems

13. (10 points) True or False? If true, prove it. If false, provide a counter-example.
$(j+k)!=j!+k!$
False! Let $k=j=2$. Then $(j+k)!=(2+2)!=41=24$ while $2!+2!=2+2=4$.
14. Class Notes (10 points) Prove $\left|Q^{+}\right|=\aleph_{0}$.

	1		2	3	4	5	6	7	8	..-
1			$\frac{1}{2}$	3	$\frac{1}{4}$	$\frac{1}{5}$	$\frac{1}{6}$	$\frac{1}{7}$	$\frac{1}{8}$...
2				2	$\frac{2}{6}$	$\frac{2}{5}$	$\frac{2}{6}$	$\frac{2}{7}$	$\frac{2}{8}$...
3			$\frac{3}{2}$	$\frac{3}{3}$	$\frac{3}{4}$	$\frac{3}{5}$	$\frac{3}{6}$	$\frac{3}{7}$	$\frac{3}{8}$...
4			$\frac{4}{3}$	4	$\frac{4}{4}$	$\frac{4}{5}$	$\frac{4}{6}$	$\frac{4}{7}$	$\frac{4}{8}$...
5			$\frac{5}{2}$	$\frac{5}{3}$	$\frac{5}{4}$	$\frac{5}{5}$	$\frac{5}{6}$	$\frac{5}{7}$	$\frac{5}{8}$...
6				6	$\frac{6}{4}$	$\frac{6}{5}$	$\frac{6}{6}$	$\frac{6}{7}$	$\frac{6}{8}$...
7				$\frac{7}{3}$	$\frac{7}{4}$	$\frac{7}{5}$	$\frac{7}{6}$	$\frac{7}{7}$	$\frac{7}{8}$...
8			$\frac{8}{2}$	$\frac{8}{3}$	$\frac{8}{4}$	$\frac{8}{5}$	$\frac{8}{6}$	$\frac{8}{7}$	$\frac{8}{8}$...
:										

from http://www.homeschoolmath.net/teaching/rational-numbers-countable.php.
15. HW 4.1 \#4 (10 points) Use mathematical induction to prove $\sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}$ for all $n \in Z^{+}$.
I. Show that $S(1)$ is true. L.H.S. $\sum_{i=1}^{1} i^{3}=1^{3}=1$. R.H.S. $\frac{1^{2}(1+1)^{2}}{4}=\frac{4}{4}=1$. Thus, $S(1)$ is true.
II. Assume $\sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}$ and show $\sum_{i=1}^{n+1} i^{3}=\frac{(n+1)^{2}(n+2)^{2}}{4}$.
$\sum_{i=1}^{n+1} i^{3}=\sum_{i=1}^{n} i^{3}+(n+1)^{3}$ which by the inductive hypothesis is $\frac{n^{2}(n+1)^{2}}{4}+(n+1)^{3}=\frac{n^{2}(n+1)^{2}}{4}+\frac{4(n+1)^{3}}{4}=$ $\frac{(n+1)^{2}\left[n^{2}+4(n+1)\right]}{4}=\frac{(n+1)^{2}\left[n^{2}+4 n+4\right]}{4}=\frac{(n+1)^{2}(n+2)^{2}}{4}$.
16. (10 points) Use induction to prove 3 divides $n^{3}+2 n-15$ for all $n \in Z^{+}$.
I. $\frac{1^{3}+2 * 1-15}{3}=\frac{1+2-15}{3}=\frac{-12}{3}=-4 \in Z$.
II. Assume $\frac{n^{3}+2 n-15}{3} \in Z$. Show $\frac{(n+1)^{3}+2(n+1)-15}{3} \in Z$
$\frac{(n+1)^{3}+2(n+1)-15}{3}=\frac{\left(n^{3}+3 n^{2}+3 n+1\right)+(2 n+2)-15}{3}=\frac{n^{3}+2 n-15}{3}+\frac{3 n^{2}+3 n+3}{3}$ which by the inductive assump-
tion is $i n t+\frac{3 n^{2}+3 n+3}{3}=i n t+\frac{3\left(n^{2}+n+1\right)}{3}=i n t+n^{2}+n+1=i n t$.
17. (10 points) Find the error in the following proof of this "theorem":
"Theorem: Every positive integer equals the next largest positive integer."
" Proof: Let $P(n)$ be the proposition ' $n=n+1$ '. To show that $P(k)=P(k+1)$, assume that $P(k)$ is true for some k, so that $k=k+1$. Add 1 to both sides of this equation to obtain $k+1=k+2$, which is $P(k+1)$. Therefore $P(k)=P(k+1)$ is true. Hence $P(n)$ is true for all positive integers n.". There is no base case to show that $1=2$.
18. HW 2.2 \#41 (10 points) For sets A, B and C, let $A \oplus C=B \oplus C$. Use contradiction to prove $A=B$. Assume $A \neq B$. Without loss of generality we can say that if $A \neq B$, then there exists $x \in A$ such that $x \notin B$. We now have two cases.

1. If $x \in C$, then $x \notin A \oplus C$ but $x \in B \oplus C$. This is a contradiction since $A \oplus C=B \oplus C$.
2. If $x \notin C$, then $x \in A \oplus C$ but $x \notin B \oplus C$. This is a contradiction since $A \oplus C=B \oplus C$.

In either case a contradiction arises. Thus, the assumption is wrong and $A=B$.

