
4.2   Chromatic Polynomial

The seven coworkers who were organizing a lunch excursion in the previous section
required at least three cars to go to lunch given their restrictions.  One such solution appeared in
Figure 4.1.2.  A second three car solution was also given in section 4.1.  A natural question is
how many different 3-colorings (car assignments) are possible for the graph.  Of course, listing
all possible colorings is one way to answer this question, but such enumeration is subject to error
especially when the number becomes large.  Sometimes by using familiar counting techniques a
polynomial may be found which will generate this answer.  

Introduced by Birkhoff and Whitney in the 1930’s (in an attempt to prove the Four Color
Problem), the chromatic polynomial of a graph G, , is a polynomial function whoseP(G, x)
input is a non-negative integer number of colors x and whose output is the number of different
legal colorings of a labeled graph G using up to and including x colors. For example, the
chromatic polynomial of  is .  Evaluating the function for , thereK3 P(K3, 3) = x3 − 3x2 + 2x x = 3
are  different legal colorings of  using up to three differentP(K3, 3) = 33 − 3(32) + 2(3) = 6 K3
colors.  All six colorings appear in Figure 4.2.1.  Since there are no legal colorings of   usingK3
one or two colors, , these are all possible 3-colorings for .  It isP(K3, 2) = P(K3, 1) = 0 K3
important to note that the coloring of the different labels is what differentiates the colorings from
one another.  There is only one way to color an unlabeled  with three colors.  For ,  K3 x = 4

 gives the number of different legal colorings of  using up toP(K3, 4) = 43 − 3(42) + 2(4) = 24 K3
four different colors.  Because  gives the number of legal colorings of  using up toP(K3, 3) K3
three different colors,  gives the number of legal colorings usingP(K3, 4) −P(K3, 3) = 24 − 6 = 18
exactly four colors.  
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Figure 4.2.1
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As can be seen, if the chromatic polynomial is known for a graph, the chromatic number
can be found.  This was the original intent when the polynomial was introduced but, of course,
this is a big “if”.  Finding the chromatic polynomial for a given graph can be quite difficult.  The
remainder of this section demonstrates the two different methods used to construct the chromatic
polynomial of a graph.  The first method is a straightforward application of the multiplication
rule. Unfortunately, the multiplication rule may not always be adequate, but when it is, it is very
fast and efficient.   
  

Let’s use the multiplication rule to construct .  If there are x colors availableP(K3, x)
when coloring , then there are x choices for the color of vertex 1.  To color vertex 2, any colorK3
other than the color used for vertex 1 may be used giving  color choices possible for vertexx − 1
2.  For vertex 3, it is not permissible to use the colors of vertices 1 and 2, which necessarily must
be different from one another because they are adjacent vertices.  Thus, there are  choicesx − 2
for coloring vertex 3.  Applying the multiplication rule produces  

.  This process is illustrated in Figure 4.2.2 where theP(K3, x) = x(x − 1)(x − 2) = x3 − 3x2 + 2x
work progresses from the upper left corner to the lower right corner.  Recalling that the
multiplication rule usually introduces order, it is clear why the graphs must be labeled for the
technique to work.
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Another example appears in Figure 4.2.3.  The method takes advantage of the fact that
the vertices 1, 2 and 4 form a .  Hence, there are x, , and  choices respectively for theK3 x − 1 x − 2
coloring of these vertices.  Finally, vertex 3 is adjacent to the already colored vertices 1 and 4.
Vertices 1 and 4 are adjacent and received different colors.  Thus, there are  different colorx − 2
choices for vertex 3 and .  In each case, remember the variable label onP(G, x) = x(x − 1)(x − 2)2
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a vertex represents the number of color choices available for that vertex and not a specific color.
Vertices 3 and 4 are not labeled with color .  Vertices 3 and 4 both have  color choicesx − 2 x − 2
available at the time they are colored. 
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As previously stated, the multiplication rule may not be sufficient for determining the
chromatic polynomial of a graph.  Consider the easy to color cycle  seen in Figure 4.2.4.C4
Determining  with only the multiplication rule is impossible.  When coloring vertices 1,P(C4, x)
2 and 3, there are x,  and  color choices respectively.  The difficulty arises in coloringx − 1 x − 1
the final vertex.  Vertex 4 cannot receive the same color as vertices 1 and 3, but these two
vertices are not adjacent and could receive the same color or different.  Hence, there are either 

 or  choices for coloring vertex 4.  A simple application of the multiplication rulex − 1 x − 2
method is not possible, but the ‘or’ in this statement should remind the careful reader of the sum
rule.
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Two cases arise to use the sum rule.  First, suppose vertices 1 and 3 receive the same
color.  Then there are x choices for coloring vertex 1,  choices for coloring vertex 2, 1x − 1
choice for coloring vertex 3 (the same color as vertex 1) and  choices for coloring vertex 4.x − 1
The multiplication rule gives the polynomial .  Second, suppose vertices 1x(x − 1)2 = x3 − 2x2 + x
and 3 receive different colors.  Then there are x choices for coloring vertex 1,  choices forx − 1
coloring vertex 2,  choices for coloring vertex 3 (any color except those two different colorsx − 2
used for vertices 1 and 2) and  choices for coloring vertex 4 (any color except those twox − 2
different colors used for vertices 1 and 3).  This gives the polynomial 

.  By the sum rule, x(x − 1)(x − 2)2 = x4 − 5x3 + 8x2 − 4x
.P(C4, x) = (x3 − 2x2 + x) + (x4 − 5x3 + 8x2 − 4x) = x4 − 4x3 + 6x2 − 3x

Of course,  is easily analyzed in this manner.  Can this idea of coloring nonadjacentC4
vertices the same or different colors be used in more involved settings such as the lunch outing
example from Section 4.1?  The answer is “maybe”, because it depends on the graph.  This idea
leads to the second method called the reduction method.  Before stating the method in Theorem
4.2.1, two new graph constructions must be defined.

The first construction formalizes the removal of an edge from a graph.  Let  beG = (V, E)
a graph and  an edge in G.  The graph  is the resulting graph when  is removed from G.ab G1 ab
Formally, .  Sometimes this is informally written as  G1 = (V, EZ ab) G1 = GZ ab.

The second construction defines how two vertices can be fused into one.  The graph G2
results from collapsing the vertices a and b into a new vertex called .  Formally, & G2 = (V&, E&)
where    andV& = VZ a, b 4 &
E& = EZ ac, bc| c is adjacent to either a or b in G 4 &c| c is adjacent to either a or b in G .

In other words, the vertex  now represents both vertices a and b, has all the same adjacencies a&
and b had in G, but has no multiple edges.
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In the reduction method, the graph represents the case where the vertices a and b areG1
not adjacent so that they may be colored the same or different colors in a coloring of .  TheG1
graph  represents the case where the vertices a and b are colored the same color. Finally, theG2
graph G, where a and b are adjacent, represents the case where a and b must be colored different
colors.  Returning to the construction of the chromatic polynomial for the cycle on four vertices,
the above comments say    Why?  The pair of vertices 1 and 3 are not adjacent in C4 = G1. C4
and cause the problem of how to color vertex 4 because the pair could be colored the same color
or a different color.  The graph where vertices 1 and 3 are colored the same is  and G2

  The graph where vertices 1 and 3 are colored differently is  and P(G2, x) = x3 − 2x2 + x. G
. Thus, .  This suggests theP(G, x) = x4 − 5x3 + 8x2 − 4x P(C4, x) = P(G1, x) = P(G2, x) +P(G, x)

following theorem due to Birkhoff and Lewis in 1946.  Note, the  example will seemC4
backwards once you see Theorem 4.2.1 applied.  This is because the example was used to
motivate the theorem, but it did not use the reduction method of the theorem to find .P(C4, x)

Theorem 4.2.1: Chromatic Polynomial Reduction Formula: For any graph  andG = (V, E)
edge , .  ab c E P(G, x) = P(G1, x) −P(G2, x)

Proof:  Let  be a graph and   an edge in G.  The statement of the reduction formulaG = (V, E) ab
is equivalent to .  Graph is the graph where vertices a and b mayP(G, x) +P(G2, x) = P(G1, x) G1
receive the same color or different colors.  Graph  is simply the graph  where the edge  isG G1 ab
added and the vertices a and b receive different colors.  Graph  is the graph  where verticesG2 G1
a and b are collapsed onto one another which is equivalent to vertices a and b receiving the same
color in .  By the sum rule,  and the reduction formulaG1 P(G, x) +P(G2, x) = P(G1, x)
immediately follows.  

Although Theorem 4.2.1 is motivated and proven by the sum rule, it is written in a
subtraction form and called a reduction formula because of the way it is applied.  If it is difficult
to find  for the original graph G, it is reduced to  and  in hopes that  and P(G, x) G1 G2 P(G1, x)

 may be easily determined.  Applying the reduction theorem to  and the  inP(G2, x) C4 1 − 2
Figure  4.2.5 yields two graphs whose chromatic polynomials may be easily determined using
the multiplication rule.  
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Thus, .P(C4, x) = P(G1, x) −P(G2, x) = x(x − 1)3 − x(x − 1)(x − 2) = x4 − 4x3 + 6x2 − 3x
Though a reduction formula was used in this instance, the chromatic polynomial remains the
same.   

Let’s use the reduction method to determine the chromatic polynomial for the graph in
Figure 4.1.1.  This graph, which will be G,  is reproduced in Figure 4.2.6 with two vertices
identified as a and b for the reduction  How are the two vertices selected?  As you may have
observed in the previous examples in this section, having subgraphs that are  make theK3
counting with the multiplication rule easy.  Thus, a and b were chosen such that when the vertex 

 is created there will be more triangles in  than originally in G.   & G2

Figure 4.2.6 also shows  and  (with vertex  identified) for the reduction method.G1 G2 &
The multiplication rule method can be applied to  easily and the vertices are labeled with theG2
possible color choices for each vertex.  In this case, two  subgraphs aid in the countingK4
because the four vertices must be colored different colors.  This gives 

.    P(G2, x) = x(x − 1)(x − 2)2(x − 3)2

6



a

b

a

d

c

*

G1 G2

x

X-1

X-2

X-3

X-3

X-2

Figure 4.2.6 

On the other hand, the cycle of length four in  creates a problem similar to theG1
situation for  alone.  A second reduction is performed on  using the vertices labeled c and dC4 G1
in Figure 4.2.6.  The two resultant graphs and   appear in Figure 4.2.7.   H1 H2
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Because of the structures of   and  , the multiplication rule may be used toH1 H2
determine their chromatic polynomials.  Once again, the vertices are labeled with the possible
choices of colors.  The two resultant polynomials are  and P(H1, x) = x(x − 1)2(x − 2)4
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.  Using Theorem 4.2.1 gives P(H2, x) = x(x − 1)(x − 2)3(x − 3)
.  After much simplifying theP(G, x) = P(G1, x) −P(G2, x) = [P(H1, x) −P(H2, x)] −P(G2, x)

chromatic polynomial is found to be  .P(G, x) = x7 − 12x6 + 62x5 − 174x4 + 275x3 − 228x2 + 76x
With the chromatic polynomial available the question asked at the beginning of the section may
be answered.  There are  different 3-colorings (car assignments) for the problem.P(G, 3) = 12

There are many interesting facts associated with the chromatic polynomial.  You may
have noticed that the degree of the polynomial (the highest power in its expansion) is the number
of vertices n.  The leading coefficient (the coefficient on the  term) is 1.  The coefficients of axn

chromatic polynomial alternate in sign (from positive to negative).  The constant term is zero.
And the absolute value of the coefficient on the term is the number of edges.  In fact,xn−1

formulas are known for determining the coefficients of the chromatic polynomials that use the
principle of inclusion and exclusion that appears later in the text.

With so much known about the chromatic polynomial, why is it difficult to find?  The
answer returns to the fact that computing the chromatic polynomial is in the class of
NP-complete problems just like the chromatic number.  There are no efficient algorithms that
work on all types of graphs.  The next section demonstrates three polynomial time algorithms for
finding the chromatic number.

Homework

1.  Determine the chromatic polynomial for each of the following graphs. 
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2.  Determine the chromatic polynomial for each of the following graphs.
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3.  For each of the graphs in Exercise 1, find the 

i.  number of different legal colorings using at most three colors;
ii.  chromatic number. 

4.  For each of the graphs in Exercise 2, find the 

i.  number of different legal colorings using at most three colors;
ii.  chromatic number.

5.  Find .   P(Kn, x)

6.  Find .   P(Nn, x)
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7.  Using the chromatic polynomial reduction formula, determine the chromatic polynomial 
for each of the following graphs. 
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8.  Using the chromatic polynomial reduction formula, determine the chromatic polynomial 
for each of the following graphs.
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9.  Siblings Joe, Mary, and Nick are planning a vacation retreat with their children.  Joe has 
one child Lisa.  Mary has three children, Donna, Michael and Richard.  Nick has two 
children, Danielle and Michelle.  The rented house has five different children’s bedrooms
that can contain at most three children each.  It has been decided that boys and girls will 
not share a room nor will siblings share a room.  If not all five bedrooms must be utilized,
how many different ways can the children’s sleeping arrangements be made?   

10.  If all five bedrooms in the previous problem must be utilized, how many different ways 
can the children’s sleeping arrangements be made? 

11.  Prove that the constant term in every chromatic polynomial is 0.  Hint! Consider the 
number of legal colorings with no colors. 
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12.  Let  be a graph with at least one edge.  Prove that the sum of the coefficients ofG = (V, E)
 is 0.  P(G, x)

13. If  then                      .P(G, x) = x(x − 1)5(x − 2)3 (G) =

14.  If  then                      .P(G, x) = x(x − 1)7 − x(x − 1)5(x − 2) (G) =

15.  Construct an example of a graph G such that
i.  ;(G) < (G2)
ii.  .(G) > (G2)

16.  Construct an example of a graph G such that
i.  ;(G) < (G2)
ii.  .(G) > (G2)

17. Consider all the labeled trees on four vertices.  Find the chromatic polynomial for each.

18. Let T be a tree.  Find .P(T, x)

19.  Using the result in Question 18, can two non-isomorphic graphs have the same 
chromatic polynomial?
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