Stirling Numbers of the Second Kind and Primality

Joe DeMaio, Stephen Touset
Department of Mathematics and Statistics
Kennesaw State University
Kennesaw, Georgia, 30144
USA
jdemaiokennesaw.edu, stephentouset.org
Introduction

The Stirling number of the second kind, \(\binom{n}{k} \) or \(S(n,k) \), is the number of partitions of an \(n \)-element set into \(k \) non-empty subsets.

The symbol, \(\binom{n}{k} \), is read as ’\(n \) subset \(k \).’

For example, \(\binom{4}{2} = 7 \) since there exist seven different ways to partition the set \(S' = \{1, 2, 3, 4\} \) into two non-empty subsets.

\[
\begin{array}{cccc}
\{\{1,2,3\}, \{4\}\} & \{\{1,2,4\}, \{3\}\} & \{\{1,3,4\}, \{2\}\} & \{\{2,3,4\}, \{1\}\} \\
\{\{1,2\}, \{3,4\}\} & \{\{1,3\}, \{2,4\}\} & \{\{1,4\}, \{2,3\}\} & \\
\end{array}
\]
The general formula for computing the Stirling number of the second kind is

\[
\left\{ \begin{array}{c} n \\ k \end{array} \right\} = \frac{1}{k!} \sum_{i=0}^{k} (-1)^i \binom{k}{i} (k-i)^n
\]

and a very frequently used recursive identity is

\[
\left\{ \begin{array}{c} n \\ k \end{array} \right\} = \left\{ \begin{array}{c} n-1 \\ k-1 \end{array} \right\} + k \left\{ \begin{array}{c} n-1 \\ k \end{array} \right\}
\]

Some Initial Values of \(\left\{ \begin{array}{c} n \\ k \end{array} \right\} \)
How about searching Stirling numbers of the second kind for primes?
A cursory glance at a table of Stirling numbers of the second kind quickly yields some prime numbers and a search does not seem to be a pointless exercise.

A **Stirling prime** (of the second kind) is a prime p such that $p = S(n,k)$ for some integers n and k.

Thus, $\left\{ \frac{6}{2} \right\} = 31$ and $\left\{ \frac{16}{4} \right\} = 171,798,901$ are both examples of Stirling primes (of the second kind).

How might we reasonably search through the sequence? We’ll use the time honored technique of throwing out as many known composites as possible.
Divisibility of $\binom{n}{k}$ by primes

In order to show that $\binom{n}{k}$ is composite it is unnecessary to determine the complete prime factorization of $\binom{n}{k}$.

Just knowing that a single small (relative to the size of $\binom{n}{k}$) prime p divides $\binom{n}{k}$ will be sufficient to disprove primality.

The rate of growth of $\binom{n}{k}$ quickly precludes us from concern that $\binom{n}{k} = p$ for some small prime p for $k \geq 3$ as in the case of $\binom{3}{2} = \binom{3}{2} = 3$.
Theorem 1: If p is prime then $p|\binom{p}{k}$ for all $2 \leq k \leq p - 1$. Furthermore, $p \nmid \binom{p}{1}, \binom{p}{p}$.

Theorem 1 shows that 5 divides $\binom{5}{2}, \binom{5}{3}$ and $\binom{5}{4}$ but not $\binom{5}{1}, \binom{5}{5}$.

In fact, divisibility by 5 can be extended further past row five in our table by making iterated applications of Equation 2.
Theorem 2: If p is prime then $p \mid \binom{p+1}{k+1}$ for all $2 \leq k \leq p - 1$. Furthermore
$\binom{p+1}{2} \equiv 1 \mod p$.

Theorem 2 now shows that 5 divides $\binom{6}{3}$, $\binom{6}{4}$ and $\binom{6}{5}$ but $5 \nmid \binom{6}{2}$.

Of course the same recursive Equation 2 can be applied not just to $\binom{p+1}{k}$ but to $\binom{p+j}{k}$ for $j \geq 2$.

Now, however, for each increase in the size of j, one fewer of $\binom{p+j}{k+j}$ is divisible by p due to the fact that two previous terms divisible by p are needed for each successive term divisible by p. Extending Theorem 2 and its proof technique yields the next theorem.
Theorem 3: If p is prime then $p|\binom{p+j}{k+j}$ for all $1 \leq j \leq p - 2$ and $2 \leq k \leq p - j$. Furthermore, $\binom{p+j}{j+1} \equiv 1 \mod p$ for all $2 \leq j \leq p - 2$.

Theorem 3 iteratively shows that 5 divides $\{6\}, \{6\}, \{6\}, \{7\}, \{7\}$ and $\{8\}$ but 5 \nmid $\{6\}, \{7\}$ and $\{8\}$.

Divisibility by 5 does not stop here. The same pattern now repeats itself again and again.

Corollary 1: If p is prime then $p|\binom{p+i(p-1)}{k}$ for all $2 \leq k \leq p - 1$ and $i \in \mathbb{Z}^+$.
Theorem 1 shows that 5 divides $\{\frac{5}{2}\}$, $\{\frac{5}{3}\}$ and $\{\frac{5}{4}\}$. Corollary 1 extends the result to show that 5 also divides $\{\frac{9}{2}\}$, $\{\frac{9}{3}\}$ and $\{\frac{9}{4}\}$, and $\{\frac{13}{2}\}$, $\{\frac{13}{3}\}$ and $\{\frac{13}{4}\}$ and so on.

Continued applications of Equation 2 and slight modifications of Theorems 2 and 3 show that the entire pattern is replicated infinitely many times.

Corollary 2 If n is a composite number then there exists k, $2 \leq k \leq n - 1$ such that $n \not| \{\binom{n}{k}\}$.

Due to Corollary 2 Theorem 1 can now be improved!

The positive integer n is a prime number if and only if $n|\{\binom{n}{k}\}$ for all $2 \leq k \leq n - 1$.
Primality of $\left\{ \binom{n}{k} \right\}$

In light of all this divisibility it might appear that $\left\{ \binom{n}{k} \right\}$ is always composite.

This is certainly not true. In fact the collection of values of n such that $\left\{ \binom{n}{2} \right\}$ is prime is closely related to a quite well known collection of primes. For all n, $\left\{ \binom{n}{2} \right\} = 2^{n-1} - 1$. Hence, for any Mersenne prime M_p, $\left\{ \binom{p+1}{2} \right\} = M_p$ and $\left\{ \binom{n}{2} \right\}$ is composite for all other values.

This immediately demonstrates the existence of 44 (as of July 7, 2008) different Stirling Numbers of the Second Kind that are prime.
Are there other prime Stirling Numbers of the second kind?

A brute force search yields the aforementioned \(\left\{ \begin{array}{c} 16 \\ 4 \end{array} \right\} \).

However, brute force quickly stops yielding results.

Clearly there is no need to check \(\left\{ \begin{array}{c} n \\ 1 \end{array} \right\} = \left\{ \begin{array}{c} n \\ n \end{array} \right\} = 1 \). Furthermore
\[
\left\{ \begin{array}{c} n \\ n-1 \end{array} \right\} = \binom{n}{2} = \frac{n(n-1)}{2}
\]
which is clearly composite except at \(n = 3 \).

Turning our attention to the theorems of the previous section yields a sieve technique to cast out composites.
With very little computational effort we know many \(\binom{n}{k} \) that must be divisible by each small prime \(p \) and can remove such \(\binom{n}{k} \) from consideration for primality testing.

For example for \(p = 5 \) we cast out the following values in bold.

<table>
<thead>
<tr>
<th>(\binom{n}{k})</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1</td>
<td>7</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>1</td>
<td>15</td>
<td>25</td>
<td>10</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>1</td>
<td>31</td>
<td>90</td>
<td>65</td>
<td>15</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>1</td>
<td>63</td>
<td>301</td>
<td>350</td>
<td>140</td>
<td>21</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>1</td>
<td>127</td>
<td>966</td>
<td>1701</td>
<td>1050</td>
<td>266</td>
<td>28</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>1</td>
<td>255</td>
<td>3025</td>
<td>7770</td>
<td>6951</td>
<td>2646</td>
<td>462</td>
<td>36</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>1</td>
<td>511</td>
<td>9330</td>
<td>34105</td>
<td>42525</td>
<td>22827</td>
<td>5880</td>
<td>750</td>
<td>45</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>1</td>
<td>1023</td>
<td>28501</td>
<td>145750</td>
<td>246730</td>
<td>179487</td>
<td>63987</td>
<td>11880</td>
<td>1155</td>
<td>55</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>1</td>
<td>2047</td>
<td>86526</td>
<td>611501</td>
<td>1379400</td>
<td>1323652</td>
<td>627396</td>
<td>159027</td>
<td>22275</td>
<td>1705</td>
<td>66</td>
</tr>
</tbody>
</table>

Values of \(\binom{n}{k} \) Relative to Divisibility by 5
Not every $\binom{n}{k}$ divisible by 5 is cast out with this process but we can rid ourselves of many composite $\binom{n}{k}$.

Repeating this process for numerous small primes significantly reduces the number of $\binom{n}{k}$ to check for primality.

A quick sieve of $\binom{n}{k}$ up to $n = 24$ yields the table below. If $\binom{n}{k}$ has multiple prime divisors, only the largest prime is entered into its cell in the table.

Of the 300 entries in this table, we are left with only 9 candidates to check for primality for $3 \leq k \leq n - 2$. Of those 9 candidates, only $\binom{16}{4}$ is prime.
After sieving out known composites, an exhaustive search of \(\binom{n}{k} \) for
\[1 \leq n \leq 100000 \text{ and } 1 \leq k \leq 6 \] yielded three additional primes: \(\{ 40 \} \), \(\{ 1416 \} \) and \(\{ 10780 \} \).
Future Work

It seems unusual that we found Stirling primes of the form \(\binom{n}{2} \) and \(\binom{n}{4} \) but not \(\binom{n}{3} \).

Is there perhaps some reason that \(\binom{n}{3} \) is always composite?

By Equation 2, \(\binom{n}{3} = 5 \times 2^{n-3} - 4 + 9 \binom{n-2}{3} \)
and since \(\binom{4}{3} = 6 \) then \(\binom{n}{3} \) is always even even for all even \(n \geq 4 \).

Similarly \(\binom{n}{3} = 65 \times 2^{n-5} - 40 + 81 \binom{n-4}{3} \)
and \(\binom{5}{3} = 25 \) shows that
\(\binom{n}{3} \equiv 0 \text{ mod } 5 \) for \(n \equiv 1 \text{ mod } 4 \).

Hence, \(\binom{n}{3} \) can be prime only for \(n \equiv 3 \text{ mod } 4 \).
But so far, no prime values of \(\binom{n}{3} \) have been located.

Nor does an obvious divisor pattern for \(\binom{n}{3} \) jump out for \(n \equiv 3 \mod 4 \).

The factoring of \(\binom{15}{3} = 227 \times 10463 \) and
\(\binom{95}{3} = 12707273 \times 295097034961 \)
\(\times 94265058593107474994927717 \) gives a glimmer of hope that \(\binom{n}{3} \) may be prime for some value of \(n \).
Can we extend the divisibility pattern of Theorems 1, 2 and 3 widthwise across the table of Stirling numbers also? Perhaps. But it will not be as simple as extending this pattern lengthwise to an if and only if result as we did with Corollary 1. Such theorems would allow us to throw out more known composite values of \(\binom{n}{k} \) extend a search with larger values of \(k \).