1 The regression line

We know how to create a scatterplot for two variables and compute the correlation coefficient r. Should there be a good correlation between two variables we may want to use one variable to predict the other. To do so we use a regression line. Other curves and functions can be utilized bet we'll work with lines for now. The equation of a line is give as

$$
\begin{equation*}
y=a+b x \tag{1}
\end{equation*}
$$

One can also use function notations as well.

$$
\begin{equation*}
f(x)=a+b x \tag{2}
\end{equation*}
$$

Example 1 Sean starts playing video poker with an initial stake of $\$ 80$ and loses an average of $\$ 2.50$ on each game. Write the equation of the regression line for predicting the amount of money Sean has after playing x games.

$$
f(x)=80-2.50 x
$$

Example 2 After 20 games of video poker how much money does Sean have? $f(20)=80-2.50 * 20=30.0$.

Example 3 When does Sean go broke?

$$
\begin{align*}
80-2.50 * x & <0 \tag{3}\\
80 & <2.5 * x \tag{4}\\
\frac{80}{2.5} & <x \tag{5}\\
32 & <x \tag{6}
\end{align*}
$$

After 32 games Sean is broke.
Now let's focus on using the regression line and interpreting its results. Consider the health data set from before. There is a medium correlation between height and weight.

How can we measure this relationship as a line? We can use technology to find a line of best fit through the data.

Regression of height and weight

How useful is the regression line? That depends on the amount of correlation between the variables. The correlation coefficient $r=0.5199$ indicates a medium positive correlation of the two variables. The square of the correlation coefficient also provides information. The value r^{2} indicates the percentage of data in y that is explained strictly by the linear relationship between x and y. Thus, $1-r^{2}$ is the percentage of data with variation from the linear relationship. In this instance $r^{2}=.2677$ of the one's weight is directly correlated to height. So, $1-.2677=0.7323$ of the one's weight is variation from height. The equation of our regression line is $f(x)=4.1765 x-117.61$.

Problem 4 What is the predicted weight of someone who is $5^{\prime \prime \prime} 7$? $4.1765 *$ $67-117.61=162.22$

Problem 5 What is the predicted weight of someone who is 5"2'?
Problem 6 What is the predicted height of someone who weighs 170 lbs? $170=$ $4.1765 x$ - 117.61, Solution is: 68. 864

Problem 7 What is the predicted height of someone who weighs 125 lbs?

Problem 8 If two people differ in height by one inch, how much do you predict they will differ in weight?

Problem 9 Does the prediction of the weight of a person who is 24 inches tall make sense (https://en.wikipedia.org/wiki/List_of_the_verified_shortest_people)?

2 Homework

1. Navidi/Monk Section 11.2: 13-16, 21, 23
