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Abstract. An effective lane detection algorithm employing the Hough 
transform and inverse perspective mapping to estimate distances in real space is 
utilized to send steering control commands to a self-driving vehicle. The 
vehicle is capable of autonomously traversing long stretches of straight road in 
a wide variety of conditions with the same set of algorithm design parameters. 
Better performance is hampered by slowly updating inputs to the steering 
control system. The 5 frames per second (FPS) using a Raspberry Pi 2 for 
image capture and processing can be improved to 23 FPS with an Odroid XU3. 
Even at 5 FPS, the vehicle is capable of navigating structured and unstructured 
roads at slow speed. 

Keywords: Self-driving vehicle, Hough transform, dynamic threshold, inverse 
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1   Introduction 

It is now generally accepted that self-driving vehicles [1]–[3] in one form or another 
are the future of automobile transportation. Every major car manufacturer is exploring 
autonomous driving [4]–[8]. Elon Musk, CEO of Tesla Motors, famously stated in 
2014 that Tesla’s new set of cars to be unveiled in 2015 will be capable of self-
driving 90% of the time [9]. Lane departure warning, adaptive cruise control, and 
self-parking features are already available on luxury model cars. Understandably, 
intense research is ongoing to develop algorithms and hardware to make these and 
more advanced self-driving capabilities sufficiently inexpensive and reliable to be 
made universally available. 

Self-driving vehicles have been pioneered by Google [10] and the DARPA Grand 
Challenge in 2005 [11]–[13] and Urban Challenge in 2007 [14]–[18]. However, the 
Google car has access to high resolution 3D maps of the world [19] and DARPA 
Urban Challenge competitors were provided exact digital maps of the course, 
enabling navigation with limited onboard perception [20]. Commercial systems do not 
currently have access to such data, requiring robust sensing systems. A wide array of 
research addresses lane detection [21], but most focus on a particular subtask with 
few offering quantitative performance evaluation on the full system [20], and even 
fewer gathering characteristics essential for navigation [22]. This manuscript 



implements all the requisite functional modules for lane detection [20], and its 
primary contribution lies in extracting steering commands from the algorithm and 
using them to control a vehicle on an actual road. In order to avoid the safety issues 
associated with testing on a full-sized automobile, the 4 ft by 4 ft aluminum-framed 
vehicle pictured in Fig. 1 was used to test lane detection and steering control. 

 
Fig. 1. Self-driving vehicle used during field tests. 

Modalities for lane and road perception include vision, light detection and ranging 
(LIDAR), geographic information systems (GPS), inertial measurement units (IMU), 
vehicle dynamics, and radar [20]. Vision is the most common, but LIDAR offers 3D 
structure of the environment and an active light source to mitigate issues stemming 
from shadow and darkness. LIDAR devices have been used extensively in the 
DARPA Grand Challenges, but high cost currently prevents their use from becoming 
widespread [20]. Accordingly, this work focuses on low-cost camera sensing instead. 
Lane detection with cameras is generally classified as using color, texture, or edge 
features to segment the road surface [21]. Among these, edge methods using some 
version of the Hough transform are one of the most common [22]–[43]. 

The main functional modules [20] of successful vision detection systems include: 
pre-processing, feature extraction, road/lane model fitting, temporal integration, and 
image to world correspondence. Some research touch only on pre-processing and 
feature extraction [25], [32], [35], [37], [38] while others apply various road models 
[22], [24], [31], [42]. A common method for connecting a road/lane model to vehicle 
position in the real world involves perspective mapping [23], [26]–[30], [34], [36], 
[40], [41], [43] which translates image lines to their corresponding locations in real 
space. Perspective mapping is most often used to reject potential lane lines not 
parallel to each other, or those indicating impossible lane widths. Temporal 
integration with the Hough transform, using information from previous image frames, 
is much less common. This technique can be used to identify a vanishing point [24] or 
reduce the image’s region of interest (ROI) [33], [39]. Temporal integration is 
essential to the algorithm presented here, by effectively reducing the ROI and 
allowing accurate localization of the vehicle in real space when only a single lane 
boundary is detected. Another uncommon but useful technique is to identify a so-
called virtual boundary, e.g. the location in the image of an undetected lane boundary 
using the detected boundary on the other side of the lane [22], [28]. The work here 
combines all these aspects: using boundary positions from previous frames calculated 
with the inverse perspective transform to limit the search space, and predicting virtual 
boundary locations when a boundary is obscured or otherwise not detected. 

The vast majority of lane detection research evaluates an algorithm offline using a 
video feed of previously recorded road images, while some are tested in real-time 
with a human driving the vehicle. Both of these methods assume the vehicle always 



travels nearly parallel to the road direction. Deviations of only 5-10° significantly 
hamper lane detection where one lane boundary can disappear completely from the 
field of view. With steering controlled autonomously rather than by a human, lane 
detection can be tested with a full range of representative road images. This work 
presents a complete system where lane detection is shown sufficient to successfully 
control steering autonomously in real road conditions. 

2   Lane Detection 

At the core of the lane detection algorithm is the Hough transform, which evaluates a 
binary edge image by discretizing all possible lines in the image into an accumulator 
matrix and counting the edge pixels falling on each line [44]. Accumulator entries 
with large numbers of pixels falling on them are likely candidates for lane boundaries. 
A detected line is selected from the candidates by searching for local maxima in the 
accumulator matrix close to the boundary detected in the previous frame. Essential to 
the algorithm is determining whether the detected line is to be trusted or not. A 
detected boundary is trusted if either it has not changed significantly from the position 
of a trusted boundary in the previous frame, or if the distance in real space between 
left and right detected boundaries is close to the actual lane width. The inverse 
perspective transform is used to measure the distance in real space between the two 
detected lines in the image. A previous version of this algorithm [45] using a 
MATLAB toolbox for the Hough transform [46] successfully identified lane 
boundaries in 95% of the frames tested during an 8-minute video of highway driving. 
The algorithm described here modifies the previous one to use the open source 
computer vision (OpenCV) library [47], [48] in order to implement it in an embedded 
system. The remainder of this section presents details of the four functional modules 
of lane detection, where the road/lane model and real world correspondence are 
covered together with the inverse perspective transform. 

2.1   Image Pre-processing 

The acquired image is first converted to grayscale since color is not used in the 
algorithm. The top half of the image is cropped out since the vanishing point falls at 
the image center, and the road bed lies in the bottom half image for a camera with 
zero roll and pitch travelling on a level road. To further reduce the ROI, the remaining 
bottom half image is split vertically where the left and right lane boundaries are 
detected independently in the left and right bottom quarters, respectively. 

2.2   Feature Extraction 

The binary edge image generated with a Canny filter is analyzed using the Hough 
transform. The HoughLines function in OpenCV returns the accumulator entries 
comprising the most edge pixels above a given threshold. Variations in road scene, 
image contrast, quality of road markings, etc. significantly affect proper threshold 



choice. Allowing HoughLines to return too many accumulator entries risks a false 
positive while too few could miss the actual lane boundary. Returning between 40 and 
50 candidate accumulator entries has been found to produce reasonable results for any 
number of different road situations. The threshold is dynamically updated every frame 
by decreasing it if fewer than 40 entries are returned and increasing if above 50. 

2.3   Temporal Integration 

Of the 40 to 50 candidate accumulator entries returned by the Hough transform, the 
actual lane boundary is expected to be one of the strongest lines. However, selecting 
the strongest line could result in identifying a windshield wiper, an adjacent boundary 
on a multiple lane road, or otherwise incorrect line. 

Each accumulator entry represents a unique line defined by the perpendicular 
distance ρ from the top left image corner and its angle θ below the horizontal [44]. 
The parameters ρ and θ are used as opposed to the more commonplace slope m and 
intercept b to avoid slope discontinuities from vertical lines. Converting between ρ,θ 
and m,b parameters is straightforward using standard trigonometry. 

The first step in determining which accumulator entry to select involves removing 
obvious outliers. As in [39], candidates are removed from consideration having values 
of ρ and θ differing significantly from the line detected in the previous frame. Some 
processing time could be saved if this step is instead moved to the pre-processing 
module [33] by negating edge pixels outside the ROI. 

Accumulator entries are returned by HoughLines in rank order of their strength, 
which is modified by comparing the Euclidean distances in ρ,θ space between each 
remaining candidate line and the line detected  in the previous frame. The ranking of 
each candidate is penalized depending on its distance normalized by the standard 
deviation of the candidate distances. If all candidates identify essentially the same 
line, none of their rankings will be modified and result in the strongest being detected. 
When candidates exhibit large dispersion in distance, however, those farther from the 
previous lane position are increasingly demoted. Standard deviation rather than mean 
is used for normalization to account for the expectation of some nonzero distance 
between detected lines from subsequent frames. The winning candidate is determined 
by the modified rank, and chosen as the “detected” lane boundary line. Whether the 
detected line is “trusted” depends on results from the inverse perspective transform. 

2.4   Inverse Perspective Transform 

The road model used assumes driving on a level surface with parallel left and right 
lane boundaries a known width apart. Comparing detected left and right lines with 
this model determines whether or not they are trusted as actual lane boundaries. 

Camera images follow the central imaging model [44], [45] where a camera is 
placed at the XYZ origin of the world coordinate axes. The perspective transform 
projecting point P in real space to its corresponding location p in the image is one-to-
one. The inverse perspective transform, however, results in an infinite number of 
points P corresponding to any given p. A one-to-one inverse correspondence between 



image lines and world-coordinate lines does exist assuming the real lines lie in the XZ 
plane at a fixed Y = H where H is the height of the camera above ground. The distance 
L of a line in world-coordinates to the camera and the yaw angle φ between the line 
and direction of travel as appears in Fig. 2 are related to the image slope m and 
intercept b according to  
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where ψ is the camera’s diagonal angle of view, Nc is the horizontal camera 
resolution, R is the image aspect ratio, and b is measured in pixels. The angle of view 
is approximately 50° for most cameras. 

 
Fig. 2.  Definition of lane distance L and yaw angle φ for a camera located at the XZ origin and 

travelling along the Z axis. 
 

Detected road boundary lines are trusted if the L distances for both left and right 
boundaries add to a value close to the actual lane width. If the detected and actual lane 
widths do not match, detected boundaries will instead be trusted if they have not 
changed significantly from the previous frame. Detection of lines in the next frame is 
dependent on boundaries from the current frame; in case only one boundary in the 
current frame is trusted, the other virtual boundary is predicted using the inverse of 
Eqn. (1) for an L one lane width away from the trusted line and the same θ. In such a 
manner, the algorithm continues to operate normally even when one lane boundary is 
occluded, beyond the field of view, beaten in rank by a nearby spurious line, or 
detection otherwise fails. 

3   Vehicle Hardware and Control 

Rather than testing vehicle control on a full-size automobile, a smaller but still road-
worthy custom vehicle was designed and built. The smaller vehicle is safer to operate 
and easier to manage. The aluminum-framed design is relatively stiff and still 
lightweight, with 10” wheels sufficiently large to traverse uneven roads and other 
obstructions. The front drive wheels control steering as well with each motor driven 
by an independent motor as in [29], while the rear caster wheels are free to swivel. 

Both Raspberry Pi and Odroid XU3 microprocessors are explored to provide image 
capture and processing. The lane detection algorithm is used to generate a steering 
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command which is sent via serial USB communication to an Arduino Uno, which in 
turn transmits pulse width modulation signals to motor controllers for each drive 
motor. The Arduino also accepts signals from a radio control (RC) receiver. The 
transmitter allows for remote control of the vehicle with a kill switch and mode 
control for manual and autonomous modes. Currently, autonomous mode uses throttle 
commands from the transmitter and steering commands from the lane detection 
algorithm. Power is supplied to the microprocessor, Arduino, and RC receiver with a 
5 V portable cell phone battery charger, while a 12 V, 7 aH lead-acid battery provides 
power to the motor controllers. 

Standard proportional, integral, derivative (PID) control can be used for self-
driving vehicles [49]. Currently a proportional derivative (PD) control output 
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1 2 32 du K W L K Kφ φ= − + + ∆   (2) 

is implemented where Wd is the most recent detected lane width, ∆φ is the change in φ 
from the previous frame, and the Ki are control gains. An integral term may be 
introduced later if significant steady state errors in L persist. Values for L and φ are 
based on trusted boundaries only, taking the average of left and right if both are 
trusted. Initial testing with only proportional gain was unable to maintain a small yaw 
angle φ; the control problem is primarily one of angle rather than position control. 
Unmitigated increases in φ quickly result in loss of one boundary from the field of 
view and driving over the other boundary. Addition of the K3 derivative term 
strengthens steering when turning away from the proper lane direction and dampens it 
to prevent overcorrection when φ is still large but improving. The control gains were 
tuned to achieve as responsive and smooth steering as possible within the constraints 
of chatter in L and φ and a relatively slow frame rate. The control output u is mapped 
to integer values between 25 and 125 to be sent to the Arduino as a single byte via 
USB. Some lane detection research specifically locates the vehicle in lane [42] or 
provides steering information [22], [50], but none distinguish between error in 
position vs. error in angle; any successful control scheme must focus primarily on 
maintaining the proper heading relative to road direction. 

4   Field Test Results 

The vehicle demonstrates successful navigation on straight paths in the numerous 
situations appearing in Fig. 3. The gray lines in Fig. 3 are trusted by the algorithm 
while black indicates lines detected in the previous frame. The top row of numbers 
report lane distances from the inverse perspective transform with left detected lane 
boundary (left), right detected boundary (right), and detected lane width (center). The 
bottom row of numbers displays the yaw angle according to the left (left) and right 
(right) detected lines, as well as the steering command (center). A command value of 
75 represents straight while 25 and 125 request full left and right turns, respectively.   

Although relatively simple, the lane detection algorithm is sufficient to traverse 
stretches of road up to 70 ft long as well as the sidewalks, hallways, and indoor 
environments in Fig. 3. For a camera level in terms of pitch and roll, the only 



necessary calibration involves the height of the camera above ground and the lane 
width. In fact none of these requirements need be specified with much accuracy when 
applying a simple, single-step calibration process. If any of the parameters are 
inaccurate, the detected width will differ slightly from its exact width. Before 
engaging autonomous mode, the road width parameter in the lane detection algorithm 
can simply be set to the detected lane width to account for any inaccuracies. No fine 
tuning of algorithm parameters is necessary; the same set of parameters (other than 
lane width) were used in all locations depicted in Fig. 3.  

   

   
Fig. 3. Various scenes successfully navigated by the vehicle including a 5 ft wide artificial lane 

in a laboratory setting, hallway, sidewalk, and several different road conditions.  

 By changing only the lane width, the vehicle is capable of autonomous control for 
lanes of widths ranging from 5 to 14 feet, even in highly noisy environments such as 
the laboratory setting in the top left image of Fig. 3. The wall and nearby equipment 
introduce additional lines parallel to actual boundaries. In Fig. 4, such a line (white) is 
falsely detected, but the 6.4 ft measured distance between the trusted (gray) and 
detected (white) lines falls outside the threshold for the actual 5 ft lane width. Instead, 
the right lane boundary is sought in the next frame at a position of the virtual 
boundary (off-white) determined by the perspective transform prediction of a line 5 ft 
to the right of the trusted line. 

 
Fig. 4. Case where a spurious lane boundary (white) is rejected – the trusted line (gray) is used 
to predict the location of the rejected lane boundary (off-white) using the perspective transform. 

 
Fig. 5. False positive trusted line due to shadow condition. 



The lane detection algorithm can still benefit from refinement as is apparent in the 
trusted right lane boundary in Fig. 5 where the detected line represents a shadow 
rather than the actual lane boundary. Situations with false positive trusted boundaries 
generally persist for only a few frames, 6 in this case, before correct identification 
resumes. The valid trusted left boundary reduces the effect of the false positive by 
averaging in accurate values for L and φ with the improper right boundary values. The 
resulting steering brought the vehicle somewhat closer to the left boundary than 
desired but still maintained the vehicle safely within the lane. 

All field test results used a Raspberry Pi 2 on a Linux operating system for image 
capture and processing. The 900 MHz quad core ARM cortex in the Raspberry Pi 2 
offers a significant improvement over the 700 MHz Raspberry Pi 1. Both versions 
include support, including a software library, for the Raspberry Pi camera module 
which connects directly to the board using a ribbon cable. Another single-board 
computer, the Odroid XU3, is also capable of running Linux and provides even more 
computing power with a 2.0 GHz quad core Cortex A-15. Both Raspberry Pi and 
Odroid execute the same Python script, differing only in image capture using the 
Odroid USB-CAM with the OpenCV VideoCapture command rather than the Pi 
camera and its library. For comparison, the Raspberry Pi is tested both with the Pi 
camera and the USB-CAM. Table 1 includes frame rates comprised of both image 
capture and processing for all three microprocessors at two resolutions. Tests have 
shown that the smaller resolution, with its higher frame rate, offers sufficient 
resolution for successful boundary detection. Frame rates for the Raspberry Pi are 
essentially independent of camera selection, and are approximately 5 times slower 
than using the more powerful Odroid XU3. Future field tests will employ the XU3 
exclusively, but have not yet been conducted as existing portable batteries are unable 
to supply 5 V at the requisite 4 A of current. 

Table 1.  Comparison of frame rates using different microprocessors. 

Resolution Microprocessor Camera Frame rate (FPS) 

352×288 

Raspberry Pi 1 Pi camera 2.2 
USB 1.8 

Raspberry Pi 2 Pi camera 4.5 
USB 5.2 

Odroid XU3 USB 23 

640×480 

Raspberry Pi 1 Pi camera 1.2 
USB 0.83 

Raspberry Pi 2 
Pi camera 2.1 
USB 2.4 

Odroid XU3 USB 11 

5   Discussion and Future Work 

Failure to maintain the vehicle in lane generally does not result from poor lane 
detection, which is successful even on the curved roads in Fig. 6 as the approximately 



straight near-field boundaries dominate the image. Rather, inability of the PD control 
scheme to react to steering commands is the weakest link. Slow frame rates around 5 
frames per second (FPS) using the Raspberry Pi 2 are partially to blame, which will 
be remedied once the XU3 power supply issue is resolved. Chatter in boundary 
detection such as jumping from one side of a double marked line to another or from 
curb shoulder to road edge is also problematic for PD control. An inertial 
measurement unit (IMU) supplying yaw angle and rate should greatly improve time 
resolution and accuracy of φ and ∆φ. The IMU data and speed from shaft encoders 
can improve lane detection by incorporating dynamic thresholds for how much a lane 
boundary is expected to change from frame to frame. Another factor contributing to 
difficulty with steering control is the inertia required to restore rotated caster wheels 
when recovering from a turn. Eventually, the vehicle’s tank drive steering should be 
replaced with a steering mechanism similar to that in a standard automobile. 

  
Fig. 6. Successful lane boundary detection on curved roads. 

     
Fig. 7. Motor and servo controlled actuation of steering (left), acceleration (center), 

and braking (right) to enable drive-by-wire control of a KIA Optima. 

The majority of lane detection research does not supply information about 
computational speed, which is essential for real-time control of autonomous vehicles. 
Some algorithms are described as fast [24] or real-time [35] but offer no information 
about computation time, while others report 10 FPS or less [23], [32], [36]. Frame 
rates between 35 and 100 FPS depending on image complexity are reported [41] at 
640×480 resolution on a 3.5 GHz computer. The 50 FPS in [34] at 640×480 using a 
2.4 GHz machine likely does not include image capture time as processing was 
performed offline. An embedded AMD E-350 1.6 GHz dual-core processor operating 
at 320×240 achieved 21 FPS [27]. The 23 FPS using the Odroid XU3 at 352×288 is 
comparable to these published frame rates. 

The vehicle and lane detection algorithm presented here is successful on structured 
and unstructured roads with a variety of features including curbs, shoulders, median 
dividers, and solid or dashed lane markings. Although currently only capable of 
traversing straight road sections, improvements are already underway to improve the 
speed and accuracy of inputs to the PD controller to improve performance. This 
includes encoder and IMU data, and eventually GPS and a scanning laser range 
finder. Completely successful self-driving vehicles must rely on multiple modalities 
such as these rather than relying solely on vision [20]. 



Field testing has so far been restricted to a 4 ft by 4 ft vehicle, but the system will 
be ported to a KIA Optima. The Optima has already been modified to be drive-by-
wire capable as depicted in Fig. 7 where a motor controls steering with a timing belt 
connected to the steering column (left), servo motors actuate the accelerator pedal 
(center), and a cable attached to the brake pedal winds around a motor shaft (right). 
Once the mature self-driving system is developed on the smaller vehicle, it can be 
adapted to control a full size automobile. 
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