Final Exam Math 2306 sec. 2

Summer 2009

Name: (2 points) Solutions
Your signature (required) confirms that you agree to practice academic honesty.

Signature:

\qquad

Problem	Points
1	
2	
3	
4	
5	
6	
7	
8	
EC	

INSTRUCTIONS: There are 8 problems with the points listed by each one. There is an additional extra credit problem worth 10 points. You may use one sheet (front and back) of notes you prepared.

To receive full credit, you must clearly justify your answer.
(1) (10 points) Use the Laplace transform to solve the initial value problem.

$$
\begin{aligned}
& y^{\prime}+y=f(t) \quad y(0)=1 \quad f(t)=\left\{\begin{array}{cc}
0, & 0 \leq t<1 \\
2, & t \geq 1
\end{array}=2 u(t-1)\right. \\
& \mathcal{L}\left\{y^{\prime}+y\right\}=\mathcal{L}\{2 u(t-1)\} \\
& s Y(s)-y(0)+Y(s)=\frac{2 e^{-s}}{s} \\
& (s+1) Y(s)=\frac{2 e^{-s}}{s}+1 \Rightarrow Y(s)=\frac{2 e^{-s}}{s(s+1)}+\frac{1}{s+1}
\end{aligned}
$$

Partial fraction decamp:

$$
\begin{aligned}
\frac{2}{s(s+1)}=\frac{A}{s}+\frac{B}{s+1} \Rightarrow \quad 2 & =A(s+1)+B s \\
\text { Let } s & =0 \quad 2 \\
s & =A \\
s & =-1 \quad 2=-B
\end{aligned}
$$

$$
\begin{aligned}
Y(s) & =\frac{2 e^{-s}}{s}-\frac{2 e^{-s}}{s+1}+\frac{1}{s+1} \\
y(t) & =\mathcal{L}^{-1}\{Y(s)\} \\
& =2 u(t-1)-2 e^{-(t-1)} u(t-1)+e^{-t}
\end{aligned}
$$

(2) (12 points) Solve the first order initial value problem. An implicit solution is acceptable.

$$
\frac{d y}{d x}=\frac{x}{\cos (2 y)} \quad y(1)=0
$$

This is separable

$$
\begin{aligned}
\int \cos 2 y d y & =\int x d x \\
\frac{1}{2} \sin 2 y & =\frac{x^{2}}{2}+C \quad \Rightarrow \\
\sin ^{2} y & =x^{2}+k \quad \text { where } k=2 C
\end{aligned}
$$

Applying the initial condition

$$
\sin (2.0)=1^{2}+k \Rightarrow 0=1+k \Rightarrow k=-1
$$

The solution to the $I V P$ is given by

$$
\sin 2 y=x^{2}-1
$$

(3) (12 points) Find the general solution to the nonhomogeneous differential equation.

$$
y^{\prime \prime}+y^{\prime}-6 y=-36 x
$$

Solve $y^{\prime \prime}+y^{\prime}-6 y=0$ for y_{c}

$$
\begin{aligned}
& m^{2}+m-6=0 \Rightarrow(m+3)(m-2)=0 \\
& m=-3 \text { or } m=2
\end{aligned}
$$

$$
y_{c}=c_{1} e^{-3 x}+c_{2} e^{2 x}
$$

Using Undetermined coefficients, guest $y_{p}=A x+B$

$$
\begin{aligned}
& y_{p}^{\prime}=A, y_{p}^{\prime \prime}=0 \\
& y_{p}^{\prime \prime}+y_{p}^{\prime}-6 y_{p}=-36 x \\
& \left.A-6(A x+B)=-36 \quad \Rightarrow \quad \begin{array}{l}
-6 A=-36 \\
A-6 B=0
\end{array}\right\} \Rightarrow \begin{array}{l}
A=6 \\
B=1
\end{array}
\end{aligned}
$$

The seven solution is

$$
y=c_{1} e^{-3 x}+c_{2} e^{2 x}+6 x+1
$$

(4) (12 points) Find the form of the particular solution using the method of undetermined coefficients. Note: You are only to find the form of the solution.

$$
\begin{gathered}
y^{\prime \prime}+y^{\prime}-6 y=\sin (3 x)+2 x^{2} e^{2 x} \quad \text { coal } g_{1}(x) \sin 3 x, \quad g_{2}(x)=2 x^{2} e^{2 x} \\
y_{p_{1}}=A \sin 3 x+B \cos 3 x \quad \text { (this works) }
\end{gathered}
$$

$\begin{aligned} & 1^{5 x} \\ & \text { ting }\end{aligned} \quad y_{p_{2}}=\left(A x^{2}+B x+C\right) e^{2 x} \quad C e^{2 x}$ duplicates y_{c}
corrected $y_{p_{2}}=\left(A x^{2}+B x+C\right) x e^{2 x}$

Finale

$$
y_{p}=A \sin ^{3} x+B \cos 3 x+\left(C x^{3}+D x^{2}+E x\right) e^{2 x}
$$

(5) (15 points) Find the half range sine and cosine series for the function $f(x)=1-x, \quad 0<x<1 . \quad$ Were $p=1$

Sine:

$$
\begin{aligned}
b_{n} & =\frac{2}{1} \int_{0}^{1} f(x) \sin \left(\frac{n \pi x}{1}\right) d x=2 \int_{0}^{1}(1-x) \sin (n \pi x) d x \\
& =2\left[-\left.\frac{(1-x)}{n \pi} \operatorname{cor}(n \pi x)\right|_{0} ^{1}-\frac{1}{n \pi} \int_{0}^{1} \cos (n f(x) d x \quad u=1-x, d n=-d x\right. \\
& =2[0=\sin (n \pi x) d x \\
& \left.=\frac{-1}{n \pi} \cos 0\right]=\frac{2}{n \pi} \quad 0 \quad \cos (n \pi x)
\end{aligned}
$$

$$
f(x)=\sum_{n=1}^{\infty} \frac{2}{n \pi} \sin (n \pi x)
$$

Cosine:

$$
\begin{array}{rlrl}
\text { sine: } & \quad a_{0}=\frac{2}{1} \int_{0}^{1} f(x) d x=2 \int_{0}^{1}(1-x) d x=2\left[x-\left.\frac{x^{2}}{2}\right|_{0} ^{1}=2\left(1-\frac{1}{2}\right)=1\right. \\
a_{n} & =\frac{2}{1} \int_{0}^{1} f(x) \cos \left(\frac{n \pi x}{1}\right) d x=2 \int_{0}^{1}(1-x) \operatorname{cor}(n \pi x) d x & u=1-x \quad d n=-d x \\
& =2\left[\left.\frac{1-x}{n \pi} \sin (n \pi x)\right|_{0} ^{1}+\frac{1}{n \pi} \int_{0}^{1} \sin (n \pi x) d x\right. & d v=\cos (n \pi x) d x \\
& =\left.\frac{-2}{n^{2} \pi^{2}} \cos (n \pi x)\right|_{0} ^{1}=\frac{1}{n \pi} \sin (n \pi x)
\end{array}
$$

$$
=\frac{2}{n^{2} \pi^{2}}\left(1-(-1)^{n}\right)
$$

$$
f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2\left(1-(-1)^{n}\right)}{n^{2} \pi^{2}} \cos (n \pi x)
$$

(6) (12 points) Find the general solution of the linear equation.
$x^{2} y^{\prime}+x y=1$
Standard form
Let's assume

$$
P(x)=\frac{1}{x} \quad \mu=e^{\int \frac{1}{x} \partial x}=e^{\ln x}=x
$$

(7) (10 points) Use reduction of order and the one given solution to find the general solution to the homogeneous equation.

$$
\begin{aligned}
& x^{2} y^{\prime \prime}+x y^{\prime}-y=0, \quad y_{1}(x)=x \quad \text { Standard form } y^{\prime \prime}+\frac{1}{x} y^{\prime}-\frac{1}{x^{2}} y=0 \\
& P(x)=\frac{1}{x}, e^{-\int P(x) d x}=e^{-\int \frac{1}{x} \partial x}=e^{-\ln x}=x^{-1} \\
& u=\int \frac{e^{-\int P(x) d x}}{y_{1}^{2}} d x=\int \frac{x^{-1}}{x^{2}} d x=\int x^{-3} d x=\frac{x^{-2}}{-2}
\end{aligned}
$$

wi con multiply by -2 to gat rid of the factor $-\frac{1}{2}$.

Take $y_{2}=x^{-2} \cdot y_{1}=x^{-2} \cdot x=x^{-1}$

$$
\quad y_{2}=\frac{1}{x}
$$

$$
\begin{aligned}
& x>0 \\
& y^{\prime}+\frac{1}{x} y=\frac{1}{x^{2}} \\
& \frac{d}{d x}[x y]=x \cdot \frac{1}{x^{2}}=\frac{1}{x} \\
& \int \frac{d}{d x}[x y] d x=\int \frac{1}{x} d x=\ln x+C \\
& x_{y}=\ln x+C \\
& y=\frac{\ln x+C}{x}
\end{aligned}
$$

(8) (15 points) Give a rough plot of the given function. Determine if it is even, odd or neither, and find its Fourier series.

$$
f(x)=\left\{\begin{array}{cc}
1, & -\pi<x<\frac{-\pi}{2} \\
0, & \frac{-\pi}{2} \leq x \leq \frac{\pi}{2} \\
1, & \frac{\pi}{2}<x<\pi
\end{array}\right.
$$

 plot of f

It's clearly even.
Its series will not contain any sine terms -ie. $b_{n}=0$ furall

Sym biometry $a_{0}=\frac{2}{\pi} \int_{0}^{\pi} f(x) d x=\frac{2}{\pi} \int_{\pi / 2}^{\pi} d x=\left.\frac{2}{\pi} x\right|_{\pi / 2} ^{\pi}=\frac{2}{\pi}\left[\pi-\frac{\pi}{2}\right]=\frac{2}{\pi}\left(\frac{\pi}{2}\right)=1$

$$
\begin{aligned}
& a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f\left(x \cos (n x) d x=\frac{2}{\pi} \int_{\pi / 2}^{\pi} \cos (n x) d x\right. \\
&=\frac{2}{\pi}\left[\left.\frac{1}{n} \sin (n x)\right|_{\pi / 2} ^{\pi}=\frac{2}{\pi}\left[\frac{1}{n} \sin (n \pi)-\frac{1}{n} \sin \left(n \frac{\pi}{2}\right)\right]\right. \\
&=\frac{-2}{n \pi} \sin \left(\frac{n \pi}{2}\right)
\end{aligned}
$$

Extra Credit (10 points): Consider the function f given with its Fourier Series.

$$
\begin{gathered}
f(x)=\left\{\begin{array}{cc}
0, & -\pi<x<0 \\
x^{2}, & 0 \leq x<\pi
\end{array}\right. \\
f(x)=\frac{\pi^{2}}{6}+\sum_{n=1}^{\infty}\left\{\frac{2(-1)^{n}}{n^{2}} \cos (n x)+\left(\frac{\pi(-1)^{n+1}}{n}+\frac{2}{\pi n^{3}}\left[(-1)^{n}-1\right]\right) \sin (n x)\right\}
\end{gathered}
$$

Show that

$$
\frac{\pi^{2}}{12}=1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\cdots
$$

$$
\text { Hint: Consider } f(0) \text {. }
$$

